首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor X (FX) has high structure homology with other proteins of blood coagulation such as factor IX (FIX) and factor VII (FVII). These proteins present at their amino-terminal extremity a gamma-carboxyglutamic acid containing domain (Gla domain), followed by two epidermal growth factor-like (EGF1 and EGF2) domains, an activation peptide, and a serine protease domain. After vascular damage, the tissue factor-FVIIa (TF-FVIIa) complex activates both FX and FIX. FXa interacts stoichiometrically with tissue pathway inhibitor (TFPI), regulating TF-FVIIa activity by forming the TF-FVIIa-TFPI-FXa quaternary complex. Conversely, FXa boosts coagulation by its association with its cofactor, factor Va (FVa). To investigate the contribution of the Gla and EGF1 domains of FX in these complexes, FX chimeras were produced in which FIX Gla and EGF1 domains substituted the corresponding domains of FX. The affinity of the two chimeras, FX/FIX(Gla) and FX/FIX(EGF1), for the TF-FVIIa complex was markedly reduced compared with that of wild-type-FX (wt-FX) independently of the presence of phospholipids. Furthermore, the association rate constants of preformed FX/FIX(Gla)-TFPI and FX/FIX(EGF1)-TFPI complexes with TF-FVIIa were, respectively, 10- and 5-fold slower than that of wt-FXa-TFPI complex. Finally, the apparent affinity of FVa was 2-fold higher for the chimeras than for wt-FX in the presence of phospholipids and equal in their absence. These data demonstrate that FX Gla and EGF1 domains contain residues, which interact with TF-FVIIa exosites contributing to the formation of the TF-FVIIa-FX and TF-FVIIa-TFPI-FXa complexes. On the opposite, FXa Gla and EGF1 domains are not directly involved in FVa binding.  相似文献   

2.
The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a Kd of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the gamma-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, we performed competitive binding experiments between 125I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. Our data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.  相似文献   

3.
In liver failure, hydrophobic toxins accumulate in the blood circulation. To support hepatic function, extracorporeal blood purification systems have been developed, in which both cationic and neutral adsorbents are used to remove albumin-bound metabolites from blood. An issue of these systems is the additional removal of coagulation factors containing negatively charged γ-carboxyglutamate (Gla) domains, which, in physiological conditions, are shielded by calcium ions. We hypothesized that complexation of calcium ions by citrate leads to exposure of negative Gla domains, resulting in their binding to the positively charged adsorbents. The data presented here confirm that the binding of coagulation factors containing Gla domains to positively charged polymers is enhanced in the presence of citrate as compared to heparin. This effect increased with increasing charge density of the polymer and has important implications for the clinical application of positively charged polymers.  相似文献   

4.
The interaction between the γ-carboxyglutamic acid-rich domain of coagulation factor VIIa (FVIIa), a vitamin-K-dependent enzyme, and phospholipid membranes plays a major role in initiation of blood coagulation. However, despite a high sequence and structural similarity to the Gla domain of other vitamin-K-dependent enzymes with a high membrane affinity, its affinity for negatively charged phospholipids is poor. A few amino acid differences are responsible for this observation. Based on the X-ray structure of lysophosphatidylserine (lysoPS) bound to the Gla domain of bovine prothrombin (Prth), models of the Gla domain of wildtype FVIIa and mutated FVIIa Gla domains in complex with lysoPS were built. Molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on the complexes were applied to investigate the significant difference in the binding affinity. The MD simulation approach provides a structural and dynamic support to the role of P10Q and K32E mutations in the improvement of the membrane contact. Hence, rotation of the Gly11 main chain generated during the MD simulation results in a hydrogen bond with Q10 side chain as well as the appearance of a hydrogen bond between E32 and Q10 forcing the loop harbouring Arg9 and Arg15 to shrink and thereby enhances the accessibility of the phospholipids to the calcium ions. Furthermore, the application of the SMD simulation method to dissociate C6-lysoPS from a series of Gla domain models exhibits a ranking of the rupture force that can be useful in the interpretation of the PS interaction with Gla domains. Finally, adiabatic mapping of Gla6 residue in FVIIa with or without insertion of Tyr4 confirms the critical role of the insertion on the conformation of the side chain Gla6 in FVIIa and the corresponding Gla7 in Prth.  相似文献   

5.
The binding of Factor IX to membranes during blood coagulation is mediated by the N-terminal gamma-carboxyglutamic acid-rich (Gla) domain, a membrane-anchoring domain found on vitamin K-dependent blood coagulation and regulatory proteins. Conformation-specific anti-Factor IX antibodies are directed at the calcium-stabilized Gla domain and interfere with Factor IX-membrane interaction. One such antibody, 10C12, recognizes the calcium-stabilized form of the Gla domain of Factor IX. We prepared the fully carboxylated Gla domain of Factor IX by solid phase peptide synthesis and crystallized Factor IX-(1-47) in complex with Fab fragments of the 10C12 antibody. The overall structure of the Gla domain in the Factor IX-(1-47)-antibody complex at 2.2 A is similar to the structure of the Factor IX Gla domain in the presence of calcium ions as determined by NMR spectroscopy (Freedman, S. J., Furie, B. C., Furie, B., and Baleja, J. D. (1995) Biochemistry 34, 12126-12137) and by x-ray crystallography (Shikamoto, Y., Morita, T., Fujimoto, Z., and Mizuno, H. (2003) J. Biol. Chem. 278, 24090-24094). The complex structure shows that the complementarity determining region loops of the 10C12 antibody form a hydrophobic pocket to accommodate the hydrophobic patch of the Gla domain consisting of Leu-6, Phe-9, and Val-10. Polar interactions also play an important role in the antibody-antigen recognition. Furthermore, the calcium coordination network of the Factor IX Gla domain is different than in Gla domain structures of other vitamin K-dependent proteins. We conclude that this antibody is directed at the membrane binding site in the omega loop of Factor IX and blocks Factor IX function by inhibiting its interaction with membranes.  相似文献   

6.
The gamma-carboxyglutamic acid (Gla) domains of the vitamin K-dependent blood coagulation proteins contain 10 highly conserved Gla residues within the first 33 residues, but factor IX is unique in possessing 2 additional Gla residues at positions 36 and 40. To determine their importance, factor IX species lacking these Gla residues were isolated from heterologously expressed human factor IX. Using ion-exchange chromatography, peptide mapping, mass spectrometry, and N-terminal sequencing, we have purified and identified two partially carboxylated recombinant factor IX species; factor IX/gamma 40E is uncarboxylated at residue 40 and factor IX/gamma 36,40E is uncarboxylated at both residues 36 and 40. These species were compared with the fully gamma-carboxylated recombinant factor IX, unfractionated recombinant factor IX, and plasma-derived factor IX. As monitored by anti-factor IX:Ca (II)-specific antibodies and by the quenching of intrinsic fluorescence, all these factor IX species underwent the Ca(II)-induced conformational transition required for phospholipid membrane binding and bound equivalently to phospholipid vesicles composed of phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine. Endothelial cell binding was also similar in all species, with half-maximal inhibition of the binding of 125I-labeled plasma-derived factor IX at concentrations of 2-6 nM. Functionally, factor IX/gamma 36,40E and factor IX/gamma 40E were similar to fully gamma-carboxylated recombinant factor IX and plasma-derived factor IX in their coagulant activity and in their ability to participate in the activation of factor X in the tenase complex both with synthetic phospholipid vesicles and activated platelets. However, Gla 36 and Gla 40 represent part of the epitope targeted by anti-factor IX:Mg(II)-specific antibodies because these antibodies bound factor IX preferentially to factor IX/gamma 36,40E and factor IX/gamma 40E. These results demonstrate that the gamma-carboxylation of glutamic acid residues 36 and 40 in human factor IX is not required for any function of factor IX examined.  相似文献   

7.
Blood coagulation is strongly dependent on the binding of vitamin K-dependent proteins to cell membranes containing phosphatidylserine (PS) via gamma-carboxyglutamic acid (Gla) domains. The process depends on calcium, which can induce nonideal behavior in membranes through domain formation. Such domain separation mediated by Ca(2+) ions or proteins can have an important contribution to the thermodynamics of the interaction between charged peripheral proteins and oppositely charged membranes. To characterize the properties of lipid-lipid interactions, molecular dynamics, and free energy simulations in a mixed bilayer membrane containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were carried out. The free energy of association between dipalmitoylphosphatidylserines in the environment of dipalmitoylphosphatidylcholines has been calculated by using a novel approach to the dual topology technique of the PS-PC hybrid. Two different methods, free energy perturbation and thermodynamic integration, were used to calculate the free energy difference. In thermodynamic integration runs three schemes were applied to evaluate the integral at the limits of lambda --> 0 or lambda --> 1. Our studies show that the association of two PSs in the environment of PCs is repulsive in the absence of Ca(2+) and becomes favorable in their presence. We also show that the mixed component membrane should exhibit nonideal behavior that will lead to PS clustering.  相似文献   

8.
Lactadherin, a milk protein, contains discoidin-type lectin domains with homology to the phosphatidylserine-binding domains of blood coagulation factor VIII and factor V. We have found that lactadherin functions, in vitro, as a potent anticoagulant by competing with blood coagulation proteins for phospholipid binding sites [J. Shi and G.E. Gilbert, Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid binding sites, Blood 101 (2003) 2628-2636]. We wished to characterize the membrane-binding properties that correlate to the anticoagulant capacity. We labeled bovine lactadherin with fluorescein and evaluated binding to membranes of composition phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine, 4:20:76 supported by 2 mum diameter glass microspheres. Lactadherin bound saturably with an apparent KD of 3.3+/-0.4 nM in a Ca++ -independent manner. The number of lactadherin binding sites increased proportionally to the phosphatidylserine content over a range 0-2% and less rapidly for higher phosphatidylserine content. Inclusion of phosphatidylethanolamine in phospholipid vesicles did not enhance the apparent affinity or number of lactadherin binding sites. The number of sites was at least 4-fold higher on small unilamellar vesicles than on large unilamellar vesicles, indicating that lactadherin binding is enhanced by membrane curvature. Lactadherin bound to membranes with synthetic dioleoyl phosphatidyl-L-serine but not dioleoyl phosphatidyl-D-serine indicating stereoselective recognition of phosphatidyl-L-serine. We conclude that lactadherin resembles factor VIII and V with stereoselective preference for phosphatidyl-L-serine and preference for highly curved membranes.  相似文献   

9.
Lactadherin, a milk protein, contains discoidin-type lectin domains with homology to the phosphatidylserine-binding domains of blood coagulation factor VIII and factor V. We have found that lactadherin functions, in vitro, as a potent anticoagulant by competing with blood coagulation proteins for phospholipid binding sites [J. Shi and G.E. Gilbert, Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid binding sites, Blood 101 (2003) 2628-2636]. We wished to characterize the membrane-binding properties that correlate to the anticoagulant capacity. We labeled bovine lactadherin with fluorescein and evaluated binding to membranes of composition phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine, 4:20:76 supported by 2 μm diameter glass microspheres. Lactadherin bound saturably with an apparent KD of 3.3±0.4 nM in a Ca++-independent manner. The number of lactadherin binding sites increased proportionally to the phosphatidylserine content over a range 0-2% and less rapidly for higher phosphatidylserine content. Inclusion of phosphatidylethanolamine in phospholipid vesicles did not enhance the apparent affinity or number of lactadherin binding sites. The number of sites was at least 4-fold higher on small unilamellar vesicles than on large unilamellar vesicles, indicating that lactadherin binding is enhanced by membrane curvature. Lactadherin bound to membranes with synthetic dioleoyl phosphatidyl-l-serine but not dioleoyl phosphatidyl-d-serine indicating stereoselective recognition of phosphatidyl-l-serine. We conclude that lactadherin resembles factor VIII and V with stereoselective preference for phosphatidyl-l-serine and preference for highly curved membranes.  相似文献   

10.
We previously reported that the first epidermal growth factor-like (EGF1) domain in factor X (FX) or factor IX (FIX) plays an important role in the factor VIIa/tissue factor (FVIIa/TF)-induced coagulation. To assess the role of gamma-carboxyglutamic acid (Gla) domains of FX and FIX in FVIIa/TF induced coagulation, we studied four new and two previously described replacement mutants: FX(PCGla) and FIX(PCGla) (Gla domain replaced with that of protein C), FX(PCEGF1) and FIX(PCEGF1) (EGF1 domain replaced with that of protein C), as well as FX(PCGla/EGF1) and FIX(PCGla/EGF1) (both Gla and EGF1 domains replaced with those of protein C). FVIIa/TF activation of each FX mutant and the corresponding reciprocal activation of FVII/TF by each FXa mutant were impaired. In contrast, FVIIa/TF activation of FIX(PCGla) was minimally affected, and the reciprocal activation of FVII/TF by FIXa(PCGla) was normal; however, both reactions were impaired for the FIX(PCEGF1) and FIX(PCGla/EGF1) mutants. Predictably, FXIa activation of FIX(PCEGF1) was normal, whereas it was impaired for the FIX(PCGla) and FIX(PCGla/EGF1) mutants. Molecular models reveal that alternate interactions exist for the Gla domain of protein C such that it is comparable with FIX but not FX in its binding to FVIIa/TF. Further, additional interactions exist for the EGF1 domain of FX, which are not possible for FIX. Importantly, a seven-residue insertion in the EGF1 domain of protein C prevents its interaction with FVIIa/TF. Cumulatively, our data provide a molecular framework demonstrating that the Gla and EGF1 domains of FX interact more strongly with FVIIa/TF than the corresponding domains in FIX.  相似文献   

11.
The binding of factor VIIa (FVIIa) to tissue factor (TF) initiates blood coagulation. The binary complex is dependent on Ca2+ binding to several sites in FVIIa and is maintained by multiple contacts distributed throughout the various domains. Although the contributions from various residues and domains, including the Ca2+ coordination, to the global binding energy have been characterized, their importance for specific local interactions is virtually unknown. To address this aspect, we have attached four spectroscopic probes to an engineered Cys residue replacing Phe140 in soluble TF (sTF). This allows the monitoring of local changes in hydrophobicity and rigidity upon complex formation at the interface between the first epidermal growth factor-like (EGF1) domain of FVIIa and sTF. The fluorescent labels used sense a more hydrophobic environment and the spin labels are dramatically immobilized when FVIIa binds sTF. The results obtained with a 4-carboxyglutamic acid (Gla)-domainless derivative of FVIIa indicate that the Gla domain has no or minimal influence on the interaction between EGF1 and sTF. However, there is a difference in local Ca2+ dependence between Gla-domainless and full-length FVIIa.  相似文献   

12.
The staphylococcal superantigen-like protein (SSL) family is composed of 14 exoproteins sharing structural similarity with superantigens but no superantigenic activity. Target proteins of four SSLs have been identified to be involved in host immune responses. However, the counterparts of other SSLs have been functionally uncharacterized. In this study, we have identified porcine plasma prothrombin as SSL10-binding protein by affinity purification using SSL10-conjugated Sepharose. The resin recovered the prodomain of prothrombin (fragment 1 + 2) as well as factor Xa in pull-down analysis. The equilibrium dissociation constant between SSL10 and prothrombin was 1.36 × 10−7 m in surface plasmon resonance analysis. On the other hand, the resin failed to recover γ-carboxyglutamic acid (Gla) domain-less coagulation factors and prothrombin from warfarin-treated mice, suggesting that the Gla domain of the coagulation factors is essential for the interaction. SSL10 prolonged plasma clotting induced by the addition of Ca2+ and factor Xa. SSL10 did not affect the protease activity of thrombin but inhibited the generation of thrombin activity in recalcified plasma. S. aureus produces coagulase that non-enzymatically activates prothrombin. SSL10 attenuated clotting induced by coagulase, but the inhibitory effect was weaker than that on physiological clotting, and SSL10 did not inhibit protease activity of staphylothrombin, the complex of prothrombin with coagulase. These results indicate that SSL10 inhibits blood coagulation by interfering with activation of coagulation cascade via binding to the Gla domain of coagulation factor but not by directly inhibiting thrombin activity. This is the first finding that the bacterial protein inhibits blood coagulation via targeting the Gla domain of coagulation factors.  相似文献   

13.
A potent anticoagulant protein, IX-bp (Factor IX binding protein), has been isolated from the venom of Trimeresurus flavoviridis (habu snake) and is known to bind specifically to the Gla (gamma-carboxyglutamic acid-rich) domain of Factor IX. To evaluate the molecular basis for its anticoagulation activity, we assessed its interactions with various clotting factors. We found that the anticoagulation activity is primarily due to binding to the Gla domains of Factors IX and X, thus preventing these factors from recognizing phosphatidylserine on the plasma membrane. The present study suggests that ligands that bind to the Gla domains of Factors IX and X may have the potential to become novel anticoagulants.  相似文献   

14.
Gas6, a ligand of receptor tyrosine kinases Axl, Sky, and Mer, potentiates cell proliferation and prevents cell death. It also contains g-carboxylglutamic acid residues that mediate the interaction of some blood coagulation factors with negatively charged phospholipids. In our previous study, we demonstrated that Gas6 specifically binds to phosphatidylserine (PS) and links Axl-expressing cells to the PS-coated surface. In this study, to further understand the biological role of the interaction of Gas6 with PS, we examined the effect of Gas6 on the uptake of PS liposomes by macrophages. In vitro phagocytosis studies showed that Gas6 enhanced the uptake of PS liposomes approximately threefold and that the interaction of Gas6 with the surface of macrophages was essential for this enhancement. Analyses of the mechanism of the uptake of PS liposome suggested that Gas6 interacts with PS liposome via its N-terminal Gla domain and with macrophages via its C-terminal domain. Like that of PS liposomes, the uptake of apoptotic cells by macrophages was also enhanced, approximately twofold, in the presence of Gas6. These findings suggest that Gas6 may help phagocytic cells recognize cells with PS exposed on their surfaces, which is considered to be one of the mechanisms for clearing away dying cells. Thus, Gas6 may play a critical role in homeostasis by facilitating the clearance of PS-expressing cells.  相似文献   

15.
Norledge BV  Petrovan RJ  Ruf W  Olson AJ 《Proteins》2003,53(3):640-648
Factor X is activated to factor Xa (fXa) in the extrinsic coagulation pathway by the tissue factor (TF)/factor VIIa (fVIIa) complex. Upon activation, the fXa molecule remains associated with the TF/fVIIa complex, and this ternary complex is known to activate protease-activated receptors (PARs) 1 and 2. Activation of fVII in the TF complex by fXa is also seen at physiologic concentrations. The ternary complexes TF/fVII/fXa, TF/fVIIa/fX, and TF/fVIIa/fXa are therefore all physiologically relevant and of interest as targets for inhibition of both coagulation and cell-signaling pathways that are important in cardiovascular disease and inflammation. We therefore present a model of the TF/fVIIa/fXa complex, built with the use of the available structures of the TF/fVIIa complex and fXa by protein-protein docking calculations with the program Surfdock. The fXa model has an extended conformation, similar to that of fVIIa in the TF/fVIIa complex, with extensive interactions with TF and the protease domain of fVIIa. All four domains of fXa are involved in the interaction. The gamma-carboxyglutamate (Gla) and epithelial growth factor (EGF1 and EGF2) domains of fVIIa are not significantly involved in the interaction. Docking of the Gla domain of fXa to TF/fVIIa has been reported previously. The docking results identify potential interface residues, allowing rational selection of target residues for site-directed mutagenesis. This combination of docking and mutagenesis confirms that residues Glu51 and Asn57 in the EGF1 domain, Asp92 and Asp95 in the EGF2 domain, and Asp 185a, Lys 186, and Lys134 in the protease domain of factor Xa are involved in the interaction with TF/fVIIa. Other fX protease domain residues predicted to be involved in the interaction come from the 160s loop and the N-terminus of the fX protease domain, which is oriented in such a way that activation of both fVII by fXa, and the reciprocal fX activation by fVIIa, is possible.  相似文献   

16.
The structure of Ca2+ prothrombin fragment 1 has been solved at 2.8-A resolution by X-ray crystallographic methods. Most of the Gla domain of fragment 1 (residues 1-48), which is high homologous with the N-terminal regions of six other blood proteins, cannot be identified in the electron density map of the apo structure. This is not the case when crystals are grown in the presence of Ca2+ ions where the Gla domain exhibits a well-defined folded structure. The folding of the Gla domain is dominated by secondary structure: (a) 3.0 turns of alpha-helix (25%) and (b) five short beta-strands arranged into two beta-structural units (40%). The Cys18-Cys23 disulfide of the small conserved loop of Gla domains is close to a cluster of conserved aromatic residues. The resulting interaction is probably responsible for the fluorescence quenching event accompanying Ca2+ ion binding. Since the Gla domain approximates a discoid, all the Gla residues are easily accessible to solvent. The arrangement of the paired Gla residues (7-8, 20-21, 26-27) is highly suggestive in that they essentially line one edge of the Gla domain creating a potentially intense electronegative environment. This region might well be that associated with phospholipid binding. The kringle structure of Ca2+ fragment 1 is essentially indistinguishable from that of the apoprotein at this stage.  相似文献   

17.
Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the γ-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.  相似文献   

18.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase.  相似文献   

19.
Historically, the vitamin K1-dependent proteins have been associated primarily with blood coagulation and secondarily with bone formation. Recent identification of K1-dependent proteins as specific ligands for the receptor tyrosine kinases (RTKs) that can stimulate cell replication and transformation and participate in cell survival highlighted a previously unrecognized and potentially important role for vitamin K1 in cell signaling. Growing evidence suggests that most normal and tumor cells possess an active K1-dependent -carboxylation mechanism necessary for the production of -carboxyglutamic acid (Gla)-containing proteins. Gla residues in proteins facilitate calcium-dependent protein/phospholipid interaction. Recent studies demonstrating the potentially positive effects of a vitamin K-dependent receptor:ligand system on cell growth and survival in general and the effects of the overexpression of these RTKs on malignant cell survival provide a new perspective on the role of vitamin K1, its dependent protein ligands, and their receptors. These cumulative observations also provide an explanation for the rigidly controlled K1 levels in the mammalian fetus and the minimal hepatic stores in the adult.  相似文献   

20.
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号