首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基因芯片技术检测重要人兽共患病病毒方法的建立   总被引:1,自引:0,他引:1  
为了建立能对25种重要人兽共患病病毒进行筛查及鉴定用的基因芯片技术,本实验首先设计针对每种病毒的寡核苷酸探针并进行探针特异性的生物信息学验证.然后探索病毒核酸随机扩增方法,优化杂交动力学条件,建立本芯片标准的数据处理分析方法.最后用细胞培养的病毒和模拟临床标本验证芯片的敏感性与特异性.结果表明,锚定随机PCR扩增法适合于本芯片病毒核酸的扩增;芯片杂交前用0.25% NaBH4进行封闭,最优杂交条件为51 ℃,2 h及50%甲酰胺浓度;芯片具有较好的敏感性及检测特异性.初步结果表明,本实验所建立的基因芯片技术可应用于对25种重要人兽共患病病毒进行筛查及鉴定.  相似文献   

2.
Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba''s short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.  相似文献   

3.
A phylogeny is a tree-based model of common ancestry that is an indispensable tool for studying biological variation. Phylogenies play a special role in the study of rapidly evolving populations such as viruses, where the proliferation of lineages is constantly being shaped by the mode of virus transmission, by adaptation to immune systems, and by patterns of human migration and contact. These processes may leave an imprint on the shapes of virus phylogenies that can be extracted for comparative study; however, tree shapes are intrinsically difficult to quantify. Here we present a comprehensive study of phylogenies reconstructed from 38 different RNA viruses from 12 taxonomic families that are associated with human pathologies. To accomplish this, we have developed a new procedure for studying phylogenetic tree shapes based on the ‘kernel trick’, a technique that maps complex objects into a statistically convenient space. We show that our kernel method outperforms nine different tree balance statistics at correctly classifying phylogenies that were simulated under different evolutionary scenarios. Using the kernel method, we observe patterns in the distribution of RNA virus phylogenies in this space that reflect modes of transmission and pathogenesis. For example, viruses that can establish persistent chronic infections (such as HIV and hepatitis C virus) form a distinct cluster. Although the visibly ‘star-like’ shape characteristic of trees from these viruses has been well-documented, we show that established methods for quantifying tree shape fail to distinguish these trees from those of other viruses. The kernel approach presented here potentially represents an important new tool for characterizing the evolution and epidemiology of RNA viruses.  相似文献   

4.
Abstract

The algorithm of Gamier, Osguthorpe and Robson (J. Mol. Biol. 120, 97–120, 1978) for prediction of protein secondary structure has been applied to the coat protein sequences of six filamentous bacteriophages: fd, Ifl, IKe, Pfl, Xf and Pf3. For subunits of Class I virions (fd, Ifl, IKe), the algorithm predicts a very high percentage of helix in comparison to other structure types, which is in accord with the results of laser Raman and circular dichroism measurements. For subunits of the Class II virions (Pfl, Xf, Pf3), the algorithm consistently predicts a predominance of β structure, which is compatible with the demonstrated facility for conversion of Class II subunits from α-helix to β-strand under appropriate experimental conditions (Thomas, Prescott and Day, J. Mol. Biol. 165, 321–356, 1983). Even when the algorithm is biased to favor helix, the Class II virion subunits are predicted to contain considerably more strand than helix. Qualitatively similar results are obtained using the algorithm of Chou and Fasman {Adv. Enzym. 47, 45–148,45-148). Therefore, both predictive and experimental methods indicate a distinction between Gass I and II subunits, which is reflected in a greater tendency of the latter to adopt other than uniform β-helical conformation. The results suggest a possible model for the disassembly of filamentous viruses which may involve the unraveling of coat protein helices at the N terminus.  相似文献   

5.
Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.  相似文献   

6.
7.
8.
Smith H  Nichols RA 《Parassitologia》2006,48(1-2):101-104
Outbreaks of water- and foodborne diseases caused by Cryptosporidium, Giardia and Toxoplasma are well documented. Three features of these zoonotic protozoa ensure a high level of environmental contamination and enhance the likelihood of waterborne transmission. Firstly, they are responsible for disease in a broad range of hosts including man, have a low infectious dose enhancing the possibility of zoonotic transmission, secondly, their transmissive stages are small in size and environmentally robust and thirdly are insensitive to the disinfectants commonly used in the water industry. In addition, there is growing evidence for the role that water and food can play in the transmission of the microsporidia, Balantidium and Blastocystis to humans.  相似文献   

9.
Simian Foamy Virus (SFV) can be transmitted from non-human primates (NHP) to humans. However, there are no documented cases of human to human transmission, and significant differences exist between infection in NHP and human hosts. The mechanism for these between-host differences is not completely understood. In this paper we develop a new Bayesian approach to the detection of APOBEC3-mediated hypermutation, and use it to compare SFV sequences from human and NHP hosts living in close proximity in Bangladesh. We find that human APOBEC3G can induce genetic changes that may prevent SFV replication in infected humans in vivo.  相似文献   

10.
11.
Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a common intestinal parasite of humans and mammals worldwide. Assessing the zoonotic transmission of the infection requires molecular characterization as there is considerable genetic variation within G. duodenalis. To date eight major genetic groups (assemblages) have been identified, two of which (A and B) are found in both humans and animals, whereas the remaining six (C to H) are host-specific and do not infect humans. Sequence-based surveys of single loci have identified a number of genetic variants (genotypes) within assemblages A and B in animal species, some of which may have zoonotic potential. Multi-locus typing data, however, has shown that in most cases, animals do not share identical multi-locus types with humans. Furthermore, interpretation of genotyping data is complicated by the presence of multiple alleles that generate “double peaks” in sequencing files from PCR products, and by the potential exchange of genetic material among isolates, which may account for the non-concordance in the assignment of isolates to specific assemblages. Therefore, a better understanding of the genetics of this parasite is required to allow the design of more sensitive and variable subtyping tools, that in turn may help unravel the complex epidemiology of this infection.  相似文献   

12.
13.
The early detection of disease epidemics reduces the chance of successful introductions into new locales, minimizes the number of infections, and reduces the financial impact. We develop a framework to determine the optimal sampling strategy for disease detection in zoonotic host-vector epidemiological systems when a disease goes from below detectable levels to an epidemic. We find that if the time of disease introduction is known then the optimal sampling strategy can switch abruptly between sampling only from the vector population to sampling only from the host population. We also construct time-independent optimal sampling strategies when conducting periodic sampling that can involve sampling both the host and the vector populations simultaneously. Both time-dependent and -independent solutions can be useful for sampling design, depending on whether the time of introduction of the disease is known or not. We illustrate the approach with West Nile virus, a globally-spreading zoonotic arbovirus. Though our analytical results are based on a linearization of the dynamical systems, the sampling rules appear robust over a wide range of parameter space when compared to nonlinear simulation models. Our results suggest some simple rules that can be used by practitioners when developing surveillance programs. These rules require knowledge of transition rates between epidemiological compartments, which population was initially infected, and of the cost per sample for serological tests.  相似文献   

14.
Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be “preemergent” zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.  相似文献   

15.
16.
PEP is a database of Predictions for Entire Proteomes. The database contains summaries of analyses of protein sequences from a range of organisms representing all three major kingdoms of life: eukaryotes, prokaryotes and archaea. All proteins publicly available for organisms were aligned against SWISS-PROT, TrEMBL and PDB. Additionally, the following annotations are provided: secondary structure, transmembrane helices, coiled coils, regions of low complexity, signal peptides, PROSITE motifs, nuclear localization signals and classes of cellular function. Proteins that contain long regions without regular secondary structure are also identified. We have produced a related database of structural domain-like fragments derived from PEP and clusters based on homology between all fragments. The PEP database, fragments and clusters are distributed freely as a set of flat files and have been integrated into SRS. The PEP group of databases can be accessed from: http://cubic.bioc.columbia.edu/pep.  相似文献   

17.
18.
The emergence of Cryptosporidium parvum-associated cryptosporidiosis as a worldwide zoonosis has stimulated interest in the modes of pathogen transmission. Here, Thaddeus Graczyk, Ronald Fayer and Michael Cranfield discuss the complex epidemiology of C. parvum, emphasizing the crosstransmission potential of the pathogen, mechanical vectors involved in water-borne transmission of the oocysts, and factors contributing to contamination of pristine waters with Cryptosporidium. They also outline the public health importance of proper interpretation of positive detection of Cryptosporidium oocysts at water-treatment facilities and identify means by which watersheds can be protected from Cryptosporidium contamination.  相似文献   

19.
Flocculants for Recovery of Food-Borne Viruses   总被引:2,自引:2,他引:0       下载免费PDF全文
The procedure described permits comparison of polyelectrolytes for their ability to flocculate food solids and thus enable filtration for recovery of food-borne viruses.  相似文献   

20.
Summary: To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号