首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Purine phosphoribosyltransferases catalyze the Mg2+ -dependent reaction that transforms a purine base into its corresponding nucleotide. They are present in a wide variety of organisms including plants, mammals, and parasitic protozoa. Giardia lamblia, the causative agent of giardiasis, lacks de novo purine biosynthesis and relies primarily on adenine and guanine phosphoribosyltransferases (APRTase and GPRTase) constituting two independent and essential purine salvage pathways. The APRTase from G. lamblia was cloned and expressed with a 6-His tag at its C terminus and purified to apparent homogeneity. Adenine and alpha-d-5-phosphoribosyl-1-pyrophosphate (PRPP) have K(m) values of 4.2 and 143 microm with a k(cat) of 2.8 s(-1) in the forward reaction, whereas AMP and PP(i) have K(m) values of 87 and 450 microm with a k(cat) of 9.5 x 10(-3) s(-1) in the reverse reaction. Product inhibition studies indicated that the forward reaction follows a random Bi Bi mechanism. Results from the kinetics of equilibrium isotope exchange further verified a random Bi Bi mechanism in the forward reaction. In a mutant enzyme, F25W, with kinetic constants similar to those of the wild type and a tryptophan residue at the adenine binding site, the addition of adenine or AMP to the free mutant enzyme resulted in fluorescence quenching, whereas PRPP caused fluorescence enhancement. The dissociation constants thus estimated are 16.5 microm for adenine, 14.3 microm for AMP, and 83.0 microm for PRPP. PP(i) exerted no detectable effect on the tryptophan fluorescence at all, suggesting a lack of PP(i) binding to the free enzyme. An ordered substrate binding in the reverse reaction with AMP bound first followed by PP(i) is thus postulated.  相似文献   

2.
Guanine phosphoribosyltransferase from Giardia lamblia, a key enzyme in the purine salvage pathway, is a potential target for anti-giardiasis chemotherapy. Recent structural determination of GPRTase (Shi, W., Munagala, N. R., Wang, C. C., Li, C. M., Tyler, P. C., Furneaux, R. H., Grubmeyer, C., Schramm, V. L., and Almo, S. C. (2000) Biochemistry 39, 6781-6790) showed distinctive features, which could be responsible for its singular guanine specificity. Through characterizing specifically designed site-specific mutants of GPRTase, we identified essential moieties in the active site for substrate binding. Mutating the unusual Tyr-127 of GPRTase to the highly conserved Ile results in 6-fold lower K(m) for guanine. A L186F mutation in GPRTase increased the affinity toward guanine by 3. 3-fold, whereas the corresponding human HGPRTase mutant L192F showed a 33-fold increase in K(m) for guanine. A double mutant (Y127I/K152R) of GPRTase retained the improved binding of guanine and also enabled the enzyme to utilize hypoxanthine as a substrate with a K(m) of 54 +/- 15.5 microm. A triple mutant (Y127I/K152R/L186F) resulted in further increased binding affinity with both guanine and hypoxanthine with the latter showing a lowered K(m) of 29.8 +/- 4.1 microm. Dissociation constants measured by fluorescence quenching showed 6-fold tighter binding of GMP with the triple mutant compared with wild type. Thus, by increasing the binding affinity of 6-oxopurine, we were able to convert the GPRTase to a HGPRTase.  相似文献   

3.
Giardia lamblia, a flagellated parasitic protozoan and the causative agent of giardiasis, lacks de novo purine biosynthesis and exists on salvage of adenine and guanine by adenine phosphoribosyltransferase and guanine phosphoribosyltransferase. Guanine phosphoribosyltransferase from G. lamblia crude extracts has been purified to apparent homogeneity by Sephacryl S-200 gel filtration followed by C-8-GMP-agarose and 2',3'-GMP-agarose affinity chromatography, resulting in an overall recovery of 77% and a purification of 83,000-fold. The molecular weight of the native enzyme as estimated by gel filtration and isokinetic sucrose gradients was found to be 58,000-63,000, with a subunit molecular weight of approximately 29,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mono P chromatofocusing chromatography gives rise to a major activity peak eluting from the column at a pH of 6.75 and two minor activity peaks at pH of 5.3 and 5.2. Hypoxanthine and xanthine can be recognized by the enzyme as substrates but at Km values 20 times higher than that observed with guanine. G. lamblia guanine phosphoribosyltransferase is immunologically distinct from human hypoxanthine-guanine phosphoribosyltransferase and Escherichia coli xanthine-guanine phosphoribosyltransferase, and G. lamblia DNA fragments are incapable of hybridizing with mouse neuroblastoma hypoxanthine-guanine phosphoribosyltransferase DNA or E. coli xanthine phosphoribosyltransferase DNA under relatively relaxed conditions. All evidence presented suggests that G. lamblia guanine phosphoribosyltransferase may be qualified as a potential target for antigiardiasis chemotherapy.  相似文献   

4.
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 A resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 A resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 A resolution. Comparisons of these three hAPRT structures with other 'type I' PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPP. Comparative analyses presented here provide structural evidence to propose the role of Glu104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.  相似文献   

5.
Macrophage migration inhibitory factor (MIF) is a eukaryotic cytokine that affects a broad spectrum of immune responses and its activation/inactivation is associated with numerous diseases. During protozoan infections MIF is not only expressed by the host, but, has also been observed to be expressed by some parasites and released into the host. To better understand the biological role of parasitic MIF proteins, the crystal structure of the MIF protein from Giardia lamblia (Gl-MIF), the etiological agent responsible for giardiasis, has been determined at 2.30 Å resolution. The 114-residue protein adopts an α/β fold consisting of a four-stranded β-sheet with two anti-parallel α-helices packed against a face of the β-sheet. An additional short β-strand aligns anti-parallel to β4 of the β-sheet in the adjacent protein unit to help stabilize a trimer, the biologically relevant unit observed in all solved MIF crystal structures to date, and form a discontinuous β-barrel. The structure of Gl-MIF is compared to the MIF structures from humans (Hs-MIF) and three Plasmodium species (falciparum, berghei, and yoelii). The structure of all five MIF proteins are generally similar with the exception of a channel that runs through the center of each trimer complex. Relative to Hs-MIF, there are differences in solvent accessibility and electrostatic potential distribution in the channel of Gl-MIF and the Plasmodium-MIFs due primarily to two “gate-keeper” residues in the parasitic MIFs. For the Plasmodium MIFs the gate-keeper residues are at positions 44 (Y?R) and 100 (V?D) and for Gl-MIF it is at position 100 (V?R). If these gate-keeper residues have a biological function and contribute to the progression of parasitemia they may also form the basis for structure-based drug design targeting parasitic MIF proteins.  相似文献   

6.
Bashor C  Denu JM  Brennan RG  Ullman B 《Biochemistry》2002,41(12):4020-4031
Adenine phosphoribosyltransferase (APRT, EC 2.4.2.7) catalyzes the reversible phosphoribosylation of adenine from alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to form AMP and PP(i). Three-dimensional structures of the dimeric APRT enzyme from Leishmania donovani (LdAPRT) bear many similarities to other members of the type 1 phosphoribosyltransferase family but do not reveal the structural basis for catalysis (Phillips, C. L., Ullman, B., Brennan, R. G., and Hill, C. P. (1999) EMBO J. 18, 3533-3545). To address this issue, a steady state and transient kinetic analysis of the enzyme was performed in order to determine the catalytic mechanism. Initial velocity and product inhibition studies indicated that LdAPRT follows an ordered sequential mechanism in which PRPP is the first substrate to bind and AMP is the last product to leave. This mechanistic model was substantiated by equilibrium isotope exchange and fluorescence binding studies, which provided dissociation constants for the LdAPRT-PRPP and LdAPRT-AMP binary complexes. Pre-steady-state kinetic analysis of the forward reaction revealed a burst in product formation indicating that phosphoribosyl transfer proceeds rapidly relative to some rate-limiting product release event. Transient fluorescence competition experiments enabled measurement of rates of binary complex dissociation that implicated AMP release as rate-limiting for the forward reaction. Kinetics of product ternary complex formation were evaluated using the fluorophore formycin AMP and established rate constants for pyrophosphate binding to the LdAPRT-formycin AMP complex. Taken together, these data enabled the complete formulation of an ordered bi-bi kinetic mechanism for LdAPRT in which all of the rate constants were either measured or calculated.  相似文献   

7.
Giardia lamblia, the protozoan parasite responsible for giardiasis, requires purine salvage from its host for RNA and DNA synthesis. G. lamblia expresses an unusual purine phosphoribosyltransferase with a high specificity for guanine (GPRTase). The enzyme's sequence significantly diverges from those of related enzymes in other organisms. The transition state analogue immucillinGP is a powerful inhibitor of HGXPRTase from malaria [Li, C. M., et al. (1999) Nat. Struct. Biol. 6, 582-587] and is also a 10 nM inhibitor of G. lamblia GPRTase. Cocrystallization of GPRTase with immucillinGP led unexpectedly to a GPRTase.immucillinG binary complex with an open catalytic site loop. Diffusion of ligands into preformed crystals gave a GPRTase.immucillinGP.Mg(2+).pyrophosphate complex in which the open loop is stabilized by crystal contacts. G. lamblia GPRTase exhibits substantial structural differences from known purine phosphoribosyltransferases at positions remote from the catalytic site, but conserves most contacts to the bound inhibitor. The filled catalytic site with an open catalytic loop provides insight into ligand binding. One active site Mg(2+) ion is chelated to pyrophosphate, but the other is chelated to two conserved catalytic site carboxylates, suggesting a role for these amino acids. This arrangement of Mg(2+) and pyrophosphate has not been reported in purine phosphoribosyltransferases. ImmucillinG in the binary complex is anchored by its 9-deazaguanine group, and the iminoribitol is disordered. No Mg(2+) or pyrophosphate is detected; thus, the 5'-phosphoryl group is needed to immobilize the iminoribitol prior to magnesium pyrophosphate binding. Filling the catalytic site involves (1) binding the purine ring, (2) anchoring the 5'-phosphate to fix the ribosyl group, (3) binding the first Mg(2+) to Asp125 and Glu126 carboxyl groups and binding Mg(2+).pyrophosphate, and (4) closing the catalytic site loop and formation of bound (Mg(2+))(2). pyrophosphate prior to catalysis. Guanine specificity is provided by two peptide carbonyl oxygens hydrogen-bonded to the exocyclic amino group and a weak interaction to O6. Transition state formation involves N7 protonation by Asp129 acting as the general acid.  相似文献   

8.
9.
Guanine phosphoribosyltransferase (GPRTase) from Giardia lamblia, an enzyme required for guanine salvage and necessary for the survival of this parasitic protozoan, has been kinetically characterized. Phosphoribosyltransfer proceeds through an ordered sequential mechanism common to many related purine phosphoribosyltransferases (PRTases) with alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) binding to the enzyme first and guanosine monophosphate (GMP) dissociating last. The enzyme is a highly unique purine PRTase, recognizing only guanine as its purine substrate (K(m) = 16.4 microM) but not hypoxanthine (K(m) > 200 microM) nor xanthine (no reaction). It also catalyzes both the forward (kcat = 76.7 s-1) and reverse (kcat = 5.8.s-1) reactions at significantly higher rates than all the other purine PRTases described to date. However, the relative catalytic efficiencies favor the forward reaction, which can be attributed to an unusually high K(m) for pyrophosphate (PPi) (323.9 microM) in the reverse reaction, comparable only with the high K(m) for PPi (165.5 microM) in Tritrichomonas foetus HGXPRTase-catalyzed reverse reaction. As the latter case was due to the substitution of threonine for a highly conserved lysine residue in the PPi-binding loop [Munagala et al. (1998) Biochemistry 37, 4045-4051], we identified a corresponding threonine residue in G. lamblia GPRTase at position 70 by sequence alignment, and then generated a T70K mutant of the enzyme. The mutant displays a 6.7-fold lower K(m) for PPi with a twofold increase in the K(m) for PRPP. Further attempts to improve PPi binding led to the construction of a T70K/A72G double mutant, which displays an even lower K(m) of 7.9 microM for PPi. However, mutations of the nearby Gly71 to Glu, Arg, or Ala completely inactivate the GPRTase, suggesting the requirement of flexibility in the putative PPi-binding loop for enzyme catalysis, which is apparently maintained by the glycine residue. We have thus tentatively identified the PPi-binding loop in G. lamblia GPRTase, and attributed the relatively higher catalytic efficiency in the forward reaction to the unusual loop structure for poor PPi binding in the reverse reaction.  相似文献   

10.
Adenine phosphoribosyltransferase was purified from Brassica juncea leaves approximately 4000-fold, to homogeneity. The native enzyme is a homodimer, with a Mr of 54,000. The purification involved (NH4)2SO4 fractionation, differential ultracentrifugation, and anion-exchange, hydrophobic, dye-ligand, and affinity chromatography. The purified enzyme has a pH optimum of 9.15 and a temperature optimum of 60 degrees C. Activity of the enzyme is stimulated by Mg2+ and is inhibited by sulfhydryl reagents. At the optimum pH and 37 degrees C, the apparent Km values for adenine and 5-phosphoribosyl-1-pyrophosphate were 3.8 and 15 microM, respectively. Analysis of the purified protein by isoelectric focusing revealed the presence of two isozymes with approximate isoelectric points of 5.3 and 5.4.  相似文献   

11.
Sequence of a giardin subunit cDNA from Giardia lamblia.   总被引:3,自引:1,他引:3       下载免费PDF全文
  相似文献   

12.
Enzymic transfer of the ribosyl group from inosine to adenine   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

13.
Shi W  Tanaka KS  Crother TR  Taylor MW  Almo SC  Schramm VL 《Biochemistry》2001,40(36):10800-10809
Adenine phosphoribosyltransferase (APRTase) is a widely distributed enzyme, and its deficiency in humans causes the accumulation of 2,8-dihydroxyadenine. It is the sole catalyst for adenine recycling in most eukaryotes. The most commonly expressed APRTase has subunits of approximately 187 amino acids, but the only crystal structure is from Leishmania donovani, which expresses a long form of the enzyme with 237 residues. Saccharomyces cerevisiae APRTase was selected as a representative of the short APRTases, and the structure of the apo-enzyme and sulfate bound forms were solved to 1.5 and 1.75 A, respectively. Yeast APRTase is a dimeric molecule, and each subunit is composed of a central five-stranded beta-sheet surrounded by five alpha-helices, a structural theme found in all known purine phosphoribosyltransferases. The structures reveal several important features of APRTase function: (i) sulfate ions bound at the 5'-phosphate and pyrophosphate binding sites; (ii) a nonproline cis peptide bond (Glu67-Ser68) at the pyrophosphate binding site in both apo-enzyme and sulfate-bound forms; and (iii) a catalytic loop that is open and ordered in the apo-enzyme but open and disordered in the sulfate-bound form. Alignment of conserved amino acids in short-APRTases from 33 species reveals 13 invariant and 15 highly conserved residues present in hinges, catalytic site loops, and the catalytic pocket. Mutagenesis of conserved residues in the catalytic loop, subunit interface, and phosphoribosylpyrophosphate binding site indicates critical roles for the tip of the catalytic loop (Glu106) and a catalytic site residue Arg69, respectively. Mutation of one loop residue (Tyr103Phe) increases k(cat) by 4-fold, implicating altered dynamics for the catalytic site loop.  相似文献   

14.
Giardia lamblia: identification of different strains from man   总被引:5,自引:0,他引:5  
Four axenically cultured human Giardia lamblia isolates from Jerusalem (KC-1, 2, 3 and 4) and one from Bethesda (WB) were compared. Three distinct groups were defined by agglutination response to rabbit anti-G. lamblia sera viz. WB; KC-3; and KC-1, 2 and 4. The same major groups were identified by isoenzyme analysis using thin-layer starch-gel electrophoresis, each group differing from the others in three or more of five enzymes studied. In addition, a single enzyme difference distinguished KC-2 from KC-1 and 4. These findings reveal significant heterogeneity in G. lamblia isolates both from widely separated areas and within a single region. Immunoassays for diagnosis of giardiasis should take into account the differences between strains. Heterogeneity among G. lamblia strains may explain the variable clinical manifestations, host response and treatment efficacy characteristic of human giardiasis.  相似文献   

15.
The transmucosal fluxes of Na+ and Cl- were studied in Giardia lamblia infected mice in the presence or absence of phorbol-12-myristate-13-acetate (PMA), the activator of protein kinase C (PKC) or 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H-7), the inhibitor of PKC or Ca(2+)-calmodulin. There was net secretion of Na+ and Cl- in infected animals, while in control animals there was net absorption of these ions. The addition of ionophore or PMA resulted in net secretion of Na+ and Cl- in the control group while in the infected group there was no change in the fluxes of these ions. The selective potent inhibitor of protein kinase C, H-7, reversed the secretion of Na+ and Cl- in infected group to absorption. The addition of PMA and Ca(2+)-ionophore together in the infected group had a partial additive effect. This study suggests that G. lamblia induced fluid secretion involves protein kinase C and further protein kinase C acts in synergism with calcium.  相似文献   

16.
The three-dimensional structure of Leishmania tarentolae adenine phosphoribosyltransferase (APRT) in complex with adenosine-5-monophosphate (AMP) and a phosphate ion has been solved. Refinement against X-ray diffraction data extending to 2.2-A resolution led to a final crystallographic R factor of 18.3%. Structural comparisons amongst this APRT enzyme and other 'type I' PRTases whose structures have been determined reveal several important features of the PRTases catalytic mechanism. Based on structural superpositions and molecular interaction potential calculations, it was possible to suggest that the PRPP is the first substrate to bind, while the AMP is the last product to leave the active site, in accordance to recent kinetic studies performed with the Leishmania donovani APRT.  相似文献   

17.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4)2SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1. Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+). In the presence of MnCl2+ other divalent cations (Mg2+, Ca2+, Ba2+, Hg2+ and Cd2+) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M  相似文献   

18.
The enzyme adenine phosphoribosyltransferase (APRT) functions to salvage adenine by converting it to adenosine-5-monophosphate (AMP). APRT deficiency in humans is a well characterized inborn error of metabolism, and APRT may contribute to the indispensable nutritional role of purine salvage in protozoan parasites, all of which lack de novo purine biosynthesis. We determined crystal structures for APRT from Leishmania donovani in complex with the substrate adenine, the product AMP, and sulfate and citrate ions that appear to mimic the binding of phosphate moieties. Overall, these structures are very similar to each other, although the adenine and AMP complexes show different patterns of hydrogen-bonding to the base, and the active site pocket opens slightly to accommodate the larger AMP ligand. Whereas AMP adopts a single conformation, adenine binds in two mutually exclusive orientations: one orientation providing adenine-specific hydrogen bonds and the other apparently positioning adenine for the enzymatic reaction. The core of APRT is similar to that of other phosphoribosyltransferases, although the adenine-binding domain is quite different. A C-terminal extension, unique to Leishmania APRTs, extends an extensive dimer interface by wrapping around the partner molecule. The active site involves residues from both subunits of the dimer, indicating that dimerization is essential for catalysis.  相似文献   

19.
Trophozoites of Giardia lamblia may have a Golgi-like structure   总被引:2,自引:0,他引:2  
Trophozoites of the primitive protozoan Giardia lamblia have been considered as cells which do not present the Golgi complex. Using C(6)-NBD ceramide, which has been shown to label the Golgi complex of mammalian cells, labelling of the perinuclear region of G. lamblia was observed by confocal laser scanning microscopy. Transmission electron microscopy of thin sections and of replicas of freeze-fractured cells revealed the presence of concentric perinuclear membranes resembling the Golgi complex.  相似文献   

20.
Mass cultivation of Giardia lamblia in a serum-free medium   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号