首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the trisaccharides O-β-d-galactopyranosyl-(1→3)-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→6)-d-galactopyranose (15) and O-β-d-galactopyranosyl-(1→3)-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→6)-d-glucopyranose (27) is described and the synthesis of α-d-glycosides by reaction of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-β-d-galactopyranosyl chloride with highly reactive hydroxyl groups is discussed. The trisaccharide 27 was coupled with serum albumin by formation of an imine intermediate and reduced to an amine, to yield a synthetic T-antigen. A similar coupling of 15 was unsuccessful.  相似文献   

2.
The stereoselective glycosylation of a model alcohol (cyclohexanol) by derivatives of 2-azido-2-deoxy-d-galactopyranose was studied under various conditions. 2-Azido-3,4,6-tri-O-benzyl-2-deoxy-β-d-galactopyranosyl chloride (9) was found to be the most efficient glycosylating agent for the synthesis of oligosaccharides containing 2-acetamido-2-deoxy-α-d-galactopyranose residues, and gave a tetrasaccharide, which is a determinant of the blood-group A (Type 1), i.e., O-α-l-fucopyranosyl-(1→2)-[O-2-acetamido-2-deoxy-α-d- galactopyranosyl-(1→3)]-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose, and its trisaccharide fragment, O-2-acetamido-2-deoxy-α-d-galactopyranosyl-(1→3)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose. In the course of this synthesis, the determinant trisaccharide related to the H blood-group, i.e., O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2- deoxy-d-glucose, was also obtained.  相似文献   

3.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

4.
《Carbohydrate research》1985,138(1):17-28
Syntheses are described for methyl 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-α-d-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranoside, methyl 3-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl-β-d-galactopyranoside, methyl 3-O-(2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranosyl)-β-d-galactopyranoside, and methyl 4-O-[3-O-(2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranosyl)-β-d-galactopyranosyl]- β-d-glucopyranoside.  相似文献   

5.
The reaction of phenyl 2-acetamido-2-deoxy-4,6- O-(p-methoxybenzylidene)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide under halide ion-catalyzed conditions proceeded readily, to give phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (8). Mild treatment of 8 with acid, followed by hydrogenolysis, provided the disaccharide phenyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-β-d-glucopyranoside. Starting from 6-(trifluoroacetamido)hexyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranoside, the synthesis of 6-(trifluoroacetamido)hexyl 2-acetamido-2-deoxy-3-O-β-l-fucopyranosyl-β-d-glucopyranoside has been accomplished by a similar reaction-sequence. On acetolysis, methyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-α-d-glucopyranoside gave 2-methyl-[4,6-di-O-acetyl-1,2-dideoxy-3-O-(2,3,4-tri-O-acetyl-α-l-fucopyranosyl)-α-d-glucopyrano]-[2, 1-d]-2-oxazoline as the major product.  相似文献   

6.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

7.
Stereo- and regio-selective synthesis of 3-O-(2-acetamido-2-deoxy-3-O-β-d- galactopyranosyl-β-d-galactopyranosyl)-1,2-di-O-tetradecyl-sn-glycerol by use of 1,2-di-O-tetradecyl-3-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-sn-glycerol as a key intermediate is described.  相似文献   

8.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

9.
phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-[4,6-O-(p-methoxybenzylidene)-β-d-alactopyranosyl]-α-d-galactopyranoside (3) was prepared from phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-galactopyranoside by zemplén deacetylation, followed by reaction with p-methoxybenzaldehyde in the presence of anhydrous zinc chloride. The selective benzoylation of 3 gave the 3′-benzoate which, on condensation with 2,3,4-tri-O-benzyl-α- l-fucopyranosyl bromide under catalysis by halide ion, afforded a crystalline trisaccharide from which the title trisaccharide was obtained by debenzoylation followed by catalytic hydrogenolysis.  相似文献   

10.
《Carbohydrate research》1987,163(1):63-72
Benzyl 2-acetamido-3-O-allyl-6-O-benzyl-2-deoxy-4-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)- α-d-glucopyranoside (4) was obtained in high yield on using the silver triflate method in the absence of base. Compound 4 was converted in six steps into benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-d-glucopyranosyl)-6-O-benzyl-3-O-(carboxymethyl)-2-deoxy-α-d- glucopyranoside, which was coupled with the benzyl ester of l-α-aminobutanoyl-d-isoglutamine and the product hydrogenolyzed to afford the title compound. O-Benzylation of benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-3-O-allyl-6-O-benzyl-2-deoxy-α-d-glucopyranoside with benzyl bromide and barium hydroxide in N,N-dimethylformamide is strongly exhanced by sonication of the reaction mixture.  相似文献   

11.
O-α-d-Mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine (12), used in the synthesis of glycopeptides and as a reference compound in the structure elucidation of glycoproteins, was synthesized via condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4-O-(2-acetamido-3-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide (5) to give the intermediate, trisaccharide azide 7. [Compound 5 was obtained from the known 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide by de-O-acetylation, condensation with benzaldehyde, acetylation, and removal of the benzylidene group.] The trisaccharide azide 6 was then acetylated, and the acetate reduced in the presence of Adams' catalyst. The resulting amine was condensed with 1-benzyl N-(benzyloxycarbonyl)-l-aspartate, and the O-acetyl, N-(benzyloxycarbonyl), and benzyl protective groups were removed, to give the title compound.  相似文献   

12.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

13.
The condensation of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl bromide and 2,3,4,6-tetra-O-benzyl-D-mannopyranosyl chloride with benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside (1), under Koenigs-Knorr conditions, gave the fully benzylated derivatives of benzyl 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranoside, benzyl 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside, and benzyl 2-acetamido-2-deoxy-4-O-α-D-mannopyranosyl-α-D-glucopyranoside. Three further compounds, namely, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)-α-D-glucopyranoside, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D)-mannopyranosyl)-α-D-glucopyranoside, and benzyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-di-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-α-D-glucopyranoside, were formed by reaction of the respective glycosyl halide with benzyl 2-acetamido-3-O-benzyl-2-deoxy-α-D-glucopyranoside present as contaminant in 1.  相似文献   

14.
G.l.c.-mass spectrometry has been used to characterize the products of N-deacetylation-nitrous acid deamination of per-O-methylated derivatives (8–11) of methyl 2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-glucopyranoside(1), methyl (2) and benzyl (3) 2-acetamido-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranosides, and methyl 2-acetamido-2-deoxy-6-O-β-D-galactopyranosyl-α-D-glucopyranoside (4). 2,5-Anhydrohexoses have been converted into alditol trideuteriomethyl ethers, alditol acetates, and aldononitriles. The importance of side reactions that lead to the formation of 2-deoxy-2-C-formylpentofuranosides is discussed.  相似文献   

15.
《Carbohydrate research》1987,165(2):207-227
8-Methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-β-d-mannopyranoside reacted with 2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl bromide to give a disaccharide from the which the glycosyl-acceptor 8-methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,4,-di-O-acetyl-α-l-rhamnopyranosyl)-β-d-manno pyranoside (19) was obtained. This glycosyl-acceptor with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride to give trisaccharide derivative 22 and with 2,3,6-tri-O-(α-2H2)benzyl-4-O-(2,3,4,6-tetra-O-(α-2H2)benzyl-α-d-glucopyranosyl)-α-d-glucopyranosyl chloride to give tetrasaccharide derivative 29. Deblocking of 22 yielded 8-methoxycarbonyloctyl O-(α-d-glucopyranosyl)-(1→3)-O-α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside and deblocking of 29 8-methoxycarbonyloctyle O-α-d-glucopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl- (1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside. Both oligosaccharides represent the “repeating unit” of the O-specific chain of the lipopolysaccharide from Aeromonas salmonicida.  相似文献   

16.
The glycosylating activity of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-galactopyrano)-[2′,1′:4,5]-2-oxazoline has been tested in reaction with partially protected saccharides having free primary or secondary hydroxyl groups or with hydroxy amino acids. 3-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl)-N-benzyloxycarbonyl-L-serine benzyl ester (3), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-galactopyranose (5), p-nitrophenyl 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-2-deoxy-β-D-glucopyranoside (7), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (9), and 3-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (11) were synthesized in high yield.  相似文献   

17.
Acetolysis of methyl 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranoside afforded 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-1,2,4,6-tetra-O-acetyl-d-galactopyranose (2). Treatment of 2 in dichloromethane with hydrogen bromide in glacial acetic acid gave 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)- 2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide (3). The α configuration of 3 was indicated by its high, positive, specific rotation, and supported by its 1H-n.m.r. spectrum. Reaction of 3 with Amberlyst A-26-p-nitrophenoxide resin in 1:4 dichloromethane-2-propanol furnished p-nitrophenyl 3-O-(2-acetamido-3,4,6- tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-β-d-galactopyranoside (7). Compound 7 was also obtained by the condensation (catalyzed by silver trifluoromethanesulfonate-2,4,6-trimethylpyridine) of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl bromide with p-nitrophenyl 2,4,6-tri-O-acetyl-β-d-galactopyranoside, followed by the usual deacylation-peracetylation procedure. O-Deacetylation of 7 in methanolic sodium methoxide furnished the title disaccharide (8). The structure of 8 was established by 13C-n.m.r. spectroscopy.  相似文献   

18.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

19.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

20.
Benzyl 2-acetamido-2-deoxy-3-O-methyl-α-d-glucopyranoside (3) was obtained by deacetalation of its 4,6-O-benzylidene derivative (2). Compound 2 was prepared by methylation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside with methyl iodide-silver oxide in N,N-dimethylformamide. Diol 3 was selectively benzoylated and p-toluenesulfonylated, to give the 6-benzoic and 6-p-toluenesulfonic esters (4 and 5, respectively). Displacement of the sulfonyl group of 5 with sodium benzoxide in benzyl alcohol afforded the 6-O-benzyl derivative (6). Glycosylation of 4 with 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide (7) in dichloromethane, in the presence of 1,1,3,3-tetramethylurea, furnished the disaccharide derivative 8. Similar glycosylation of compound 6 with bromide 7 gave the disaccharide derivative 10. O-Deacetylation of 8 and 10 afforded disaccharides 9 and 11. The structure of compound 9 was established by 13C-n.m.r. spectroscopy. Hydrogenolysis of the benzyl groups of 11 furnished the disaccharide 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-3-O-methyl-d-glucopyranose (N-acetyl-3-O-methyllactosamine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号