首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertion of nickel ions into the empty catalytic site of horse liver alcohol dehydrogenase yields an active enzyme with 65% metal substitution and about 12% intrinsic activity. The electronic absorption spectrum is characterized by bands at 357 nm (2900 M?1 cm?1, 407 nm (3500 M?1 cm?1), 505 nm (300 M?1 cm?1), 570 nm (?130 M?1 cm?1), and 680 nm (?80 M?1 cm?1). The absorption and CD spectra are similar to those of nickel(II) azurin and nickel(II) aspartate transcarbamoylase and prove coordination of the nickel(II) ions to sulfur in a distorted tetrahedral coordination geometry. Changes of the spectra upon ligand binding at the metal or conformation changes of the protein induced by coenzyme, or both, indicate alterations of the metal geometry.The chromophoric substrate trans-4-(N, N-dimethylamino)-cinnamaldehyde forms a ternary complex with Ni(II) liver alcohol dehydrogenase and the coenzyme analogue 1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide, stable between pH 6 and 10. The corresponding ternary complex with NADH is only stable at pH > 9.0. The spectral redshifts induced in the substrate are 11 nm larger than those found in the zinc enzyme. We suggest direct coordination of the substrate to the catalytic metal ion which acts as a Lewis acid in both substrate coordination and catalysis.  相似文献   

2.
Lung N-oxidase enzyme activity was about three times higher than liver N-oxidase at the pH optimum, about pH 8.9, whereas the activities were nearly the same at more physiological ranges of pH. The lung N-oxidase was also stimulated about 2-fold by 100 mM Mg2+ and by 0.1 mM Hg2+, whereas liver N-oxidase activity was inhibited by these concentrations of ions. The difference in response of liver and lung enzymes to Mg2+ and Hg2+ was not altered by preparing the microsomes in the presence of 50 mM ethylenediamine tetraacetic acid (EDTA) in 0.1 M Tris (hydroxymethyl) amino methane (Tris) buffer or 50 mM EDTA in 0.1 M KPO4 buffer, both at pH 7.6, indicating that the differences are probably not due to the presence of endogenous metals. The difference between the liver and lung N-oxidase systems may be due to the tissue environment rather than to the enzyme itself since mercury stimulation of lung N-oxidation began to disappear upon partial purification of the N-oxidase enzymes. In contrast to the effects of Hg2+ and Mg2+, 1 mM Ni2+ enhanced liver N-oxidase activity about 30% and 5 mM Ni2+ stimulated lung enzyme activity about 30% whereas concentrations above 10 mM were inhibitory to both N-oxidases. Both liver and lung demethylase activities were inhibited by these concentrations of Mg2+, Hg2+ and Ni2+.Various suifhydryl reagents were also tested for their effects on these enzymes. The mercurials, para-chloromercurybenzoate (pCMB) and phenylmercuryacetate (PMA) at concentrations of 0.1 mM had the same effect as HgCl2 inhibiting both demethylases and liver N-oxidase, but stimulating lung N-oxidase activity. However, 0.1 mM to 1 mMN-ethylmaleimide (NEM) and iodoacetamide had little if any effect on either liver or lung N-oxidase. It was also shown that Hg2+ effects on N-oxidase activity could be overcome by dilution.Changes in N,N-dimethyl aniline (DMA) metabolism with age were followed in rabbits from 4 days old to adult. There was a steady increase in lung demethylase activity and N-oxidase activity in the liver and lung to adult levels. However, the liver demethylase had a sharp increase in activity between 2 weeks and 1 month much like that seen with benzphetamine demethylase in rabbit liver.Activities of N-demethylase in liver and lung, and N-oxidr.se in liver from new-born rabbits were from 10 to 20 % of adult levels. However, in lung, N-oxidase activities in the newborn were about 50 % of adult levels. Microsomal N-oxidation in lungs from 2-day-old rabbits was stimulated by 0.1 mM mercury just as in the adult.  相似文献   

3.
Lead-substituted bovine carbonic anhydrase is investigated and the return to the holoenzyme form with exchange of Pb2+ by Zn2+ is followed by uv difference spectroscopy and by esterase activity methods. Equimolar amounts of Pb2+ added to apocarbonic anhydrase release one hydronium ion per molecule below pH 6. Above this pH there is a net gain of hydronium ions by the enzyme, due to Pb(OH)+ → Pb(OH2)2 +, when the metal is bound within the active site of the enzyme molecule. The reduced hydrolysis by lead when it is bound to the enzyme is relevant to the theory of Zn2+ hydrolysis as a mechanism for carbon dioxide hydration by the holoenzyme and to the idea of an altered pKhydrolysis when Zn2+ is bound in the enzyme active site cavity. Lead appears to be bound to a His residue in the active site and to interact with a Tyr residue nearby. The Tyr interaction is disrupted by a high concentration of chloride ions, (also by lower concentrations of cyanide ions), but such anions do not displace lead from the enzyme. At pH 8.0 the buffer-free exchange of Pb2+ by Zn2+ is found to be consistent with a second-order process with an effective β = (95 ± 7) M?1 sec?1. Thus lead is more rapidly replaced by zinc than is Mn2+ or VO2+ whose replacement kinetics have been reported by others. Comparison of esterase-activation and spectral curves with second-order models shows that the effective β is both large and buffer dependent, indicating that a proton transfer process or buffer anion effects may be rate limiting in the buffer-free case.  相似文献   

4.
In biological systems, enzymes often use metal ions, especially Mg2+, to catalyze phosphodiesterolysis, and model aqueous studies represent an important avenue of examining the contributions of these ions to catalysis. We have examined Mg2+ and Ca2+ catalyzed hydrolysis of the model phosphodiester thymidine-5′-p-nitrophenyl phosphate (T5PNP). At 25 °C, we find that, despite their different Lewis acidities, these ions have similar catalytic ability with second-order rate constants for attack of T5PNP by hydroxide (kOH) of 4.1 × 10−4 M−1s−1 and 3.7 × 10−4 M−1s−1 in the presence of 0.30 M Mg2+ and Ca2+, respectively, compared to 8.3 × 10−7 M−1s−1 in the absence of divalent metal ion. Examining the dependence of kOH on [M2+] at 50 °C indicates different kinetic mechanisms with Mg2+ utilizing a single ion mechanism and Ca2+ operating by parallel single and double ion mechanisms. Association of the metal ion(s) occurs prior to nucleophilic attack by hydroxide. Comparing the kOH values reveals a single Mg2+ catalyzes the reaction by 1800-fold whereas a single Ca2+ ion catalyzes the reaction by only 90-fold. The second Ca2+ provides an additional 10-fold catalysis, significantly reducing the catalytic disparity between Mg2+ and Ca2+.  相似文献   

5.
The copper(II), nickel(II) and zinc(II) binding ability of the multi-histidine peptide N-acetyl-His-Pro-His-His-NH2 has been studied by combined pH-potentiometry and visible, CD and EPR spectroscopies. The internal proline residue, preventing the metal ion induced successive amide deprotonations, resulted in the shift of this process toward higher pH values as compared to other peptides. The metal ions in the parent [ML]2+ complexes are exclusively bound by the three imidazole side chains. In [CuH−1L]+, formed between pH 6-8, the side chains of the two adjacent histidines and the peptide nitrogen between them are involved in metal ion binding. The next deprotonation results in the proton loss of the coordinated water molecule (CuH−1L(OH)). The latter two species exert polyfunctional catalytic activity, since they possess superoxide dismutase-, catecholase- (the oxidation of 3,5-di-tert-butylcatechol) and phosphatase-like (transesterification of the activated phosphoester 2-hydroxypropyl-4-nitrophenyl phosphate) properties. On further increase of the pH rearrangement of the coordination sphere takes place leading to the [CuH−3L] species, the deprotonated amide nitrogen displaces a coordinated imidazole nitrogen from the equatorial position of the metal ion. The shapes of the visible and CD spectra reflect a distorted arrangement of the donor atoms around the metal ion. In presence of zinc(II) the species [ZnL]2+ forms only above pH 6, which is shortly followed by precipitation. On the other hand, the [NiL]2+ complex is stable over a wide pH range, its deprotonation takes place only above pH 8. At pH 10 an octahedral NiH−2L species is present at first, which transforms slowly to a yellow square planar complex.  相似文献   

6.
Macroalgae have received much attention for heavy metal removal in treatment of domestic wastewater. In this report, the uptake capacity of a common freshwater green alga, Cladophora fracta, for heavy metal ions (copper, zinc, cadmium, and mercury) was evaluated. The equilibrium adsorption capacities were 2.388?mg Cu2+, 1.623?mg Zn2+, 0.240?mg Cd2+, and 0.228?mg Hg2+ per gram of living algae at 18°C and pH?5.0. The removal efficiency for Cu2+, Zn2+, Cd2+, and Hg2+ were 99, 85, 97, and 98%, respectively. Greater removal efficiency was achieved when the concentrations of metal ions were at very low level. The results indicated that living algae are suitable for removal and recovery of heavy metal ions from aqueous solutions and can be a potential tool to treat industrial wastewater.  相似文献   

7.
The effects of various chemical agents on longevity of the cercariae of Schistosoma mansoni Sambon, 1907, were investigated. The median lifetime of cercariae maintained in dechlorinated tap water (DTW) was 10.5 hr. Increasing concentrations of sodium chloride added to distilled water increased the median lifetime to an optimum of 10 hr at 0.01 M; higher salt levels decreased longevity. At this optimum sodium chloride level, concentrations of glucose between 0.003 M and 0.03 M enhanced median survival to 13–14 hr. Using Tris-HCl buffers the effects of pH and ionic strength were examined. Cercarial longevity increased from 3.5 to 25 hr as pH increased from 6.4 to 9.0, and 0.01 M Tris was superior to 0.001 M Tris at a given pH. The greatest median lifetime (26 hr) was obtained in 0.01 M Tris, pH 9.0. Infectivity of cercariae in Tris at this optimal pH was compared to that in DTW. Maintenance in DTW resulted in greater worm burdens in mice than did treatment with Tris. This suggested that factors which affect cercarial longevity may not influence infectivity in the same manner. The effects of rotenone, Antimycin A, dinitrophenol, and potassium cyanide on cercarial viability suggested the existence of a functioning terminal electron transport chain similar to that of mammalian systems.  相似文献   

8.
The stabilizing influence of Ca2+, Mg2+, Ba2+ and Na+ on the di-decameric structure of the hemocyanin of the bivalve, Yoldia limatula has been investigated by light-scattering molecular weight measurements and by analytical ultracentrifugation. The molecular weight (Mw) data, examined as a function of decreasing divalent ion and sodium ion concentrations at pH 8.0 and at a constant hemocyanin concentration of 0.10 g·l−1, show biphasic transition profiles, with a sharp initial decline in Mw as the concentration of the stabilizing cations is reduced. The analysis of the molecular weight data is best described in terms of the four-species, di-decamer-decamer-dimer-monomer scheme of association-dissociation equilibria. About 25 to 35 bound divalent ions and about 10 bound Na+ ions per half-molecule or decamer are required in order to account for the initial step of the observed transitions. The subsequent transitions representing the decamer to dimer and the dimer to nonomer steps of the reaction account for the additional binding of three to four and two to four cations per dimer and per monomer, respectively. The relatively large number of divalent ions per decamer suggests strong ionic stabilization of the decamer to decamer contacts within the parent di-decameric assembly of Yoldia hemocyanin. This is consistent with earlier observations showing relatively few hydrophobic groups at the decamer to decamer contact areas.  相似文献   

9.
The peptidases in clan MH are known as cocatalytic zinc peptidases that have two zinc ions in the active site, but their metal preference has not been rigorously investigated. In this study, the molecular basis for metal preference is provided from the structural and biochemical analyses. Kinetic studies of Pseudomonas aeruginosa aspartyl aminopeptidase (PaAP) which belongs to peptidase family M18 in clan MH revealed that its peptidase activity is dependent on Co2+ rather than Zn2+: the kcat (s−1) values of PaAP were 0.006, 5.10 and 0.43 in no-metal, Co2+, and Zn2+ conditions, respectively. Consistently, addition of low concentrations of Co2+ to PaAP previously saturated with Zn2+ greatly enhanced the enzymatic activity, suggesting that Co2+ may be the physiologically relevant cocatalytic metal ion of PaAP. The crystal structures of PaAP complexes with Co2+ or Zn2+ commonly showed two metal ions in the active site coordinated with three conserved residues and a bicarbonate ion in a tetragonal geometry. However, Co2+- and Zn2+-bound structures showed no noticeable alterations relevant to differential effects of metal species, except the relative orientation of Glu-265, a general base in the active site. The characterization of mutant PaAP revealed that the first metal binding site is primarily responsible for metal preference. Similar to PaAP, Streptococcus pneumonia glutamyl aminopeptidase (SpGP), belonging to aminopeptidase family M42 in clan MH, also showed requirement for Co2+ for maximum activity. These results proposed that clan MH peptidases might be a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase.  相似文献   

10.
The interaction of bovine prothrombin with Ca2+ and Mg2+ ions was investigated by following H+ release as a function of metal ion concentration at pH 6 and pH 7.4 at high and low ionic strength. Prothrombin Ca2+ and Mg2+ binding is characterized by high- and low-affinity sites. M2+ binding at these sites is associated with intramolecular conformational changes and also with intermolecular self-association. The pH dependence of H+ release by M2+ is bell shaped and consistent with controlling pKa values of 4.8 and 6.5. At pH 6 and low ionic strength, both Ca2+ and Mg2+ titrations following H+ release clearly show independent low- and high-affinity binding sites. Laser light scattering reveals that at pH 7.4 and low ionic strength, and at pH 6.0 and high ionic strength, the prothrombin molecular weight is between 73 and 98 kD. At pH 7.4 and high ionic strength, prothrombin is monomeric in the absence of metal ions, but appears to dimerize in the presence of M2+. At pH 6.0 and low ionic strength prothrombin exists as a dimer in the absence of metal ions and is tetrameric in the presence of Ca2+ and remains dimeric in the presence of Mg2+. These results and those for metal ion-dependent H+ release indicate that H+ release occurs concomitantly with association processes involving prothrombin.Abbreviations GLA -carboxyglutamic acid; fragment 1. amino terminal residues 1–156 of bovine prothrombin - MES 2-(N-morpholino) ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - PS/PC phosphatidylserine/phosphatidylcholine vesicles - ionic strength  相似文献   

11.
The capacity of various metal ions to support activation of bovine factor IX, by the coagulant protein of Russell's Viper venom, has been examined. The following metal ions, at concentrations which saturate their effect, promoted activation of factor IX, at approximately equal efficiency: Ca2+, Mn2+, Sr2+, and Co2+, Other metal ions, i.e., Ba2+, and Mg2+, at saturating concentrations, led to a maximum rate of activation of factor IX of 25%, compared to Ca2+, The lanthanides, Gd2+, and Tb3+, also promoted activation in this system, at maximal rates of approximately 15%, compared to Ca2+, In this study, it was also discovered that the esterase activity of bovine factor IXa was dependent upon the presence of metal ions. Utilizing α-N-benzoyl-l-arginine ethyl ester as the substrate, steady state kinetic analysis in the absence of metal ion indicated that the Km and Vmax for this substrate was 20 mm and 2.9 μmol substrate cleaved min?1 mg?1 of factor IXa, respectively, at pH 8.0 and 30 °C. In the presence of optimal concentrations of Ca2+, Mn2+, Mg2+, Sr2+, and Ba2+, the Vmax values for this same substrate increased to 6.7, 5.9, 5.0, 5.0, and 3.7 μmol cleaved min?1 mg?1 of factor IXa, respectively. None of these metal ions had an affect on the Km value of this substrate.  相似文献   

12.
A group of highly efficient Zn(II)-dependent RNA-cleaving deoxyribozymes has been obtained through in vitro selection. They share a common motif with the ‘8–17’ deoxyribozyme isolated under different conditions, including different design of the random pool and metal ion cofactor. We found that this commonly selected motif can efficiently cleave both RNA and DNA/RNA chimeric substrates. It can cleave any substrate containing rNG (where rN is any ribonucleotide base and G can be either ribo- or deoxyribo-G). The pH profile and reaction products of this deoxyribozyme are similar to those reported for hammerhead ribozyme. This deoxyribozyme has higher activity in the presence of transition metal ions compared to alkaline earth metal ions. At saturating concentrations of Zn2+, the cleavage rate is 1.35 min–1 at pH 6.0; based on pH profile this rate is estimated to be at least ~30 times faster at pH 7.5, where most assays of Mg2+-dependent DNA and RNA enzymes are carried out. This work represents a comprehensive characterization of a nucleic acid-based endonuclease that prefers transition metal ions to alkaline earth metal ions. The results demonstrate that nucleic acid enzymes are capable of binding transition metal ions such as Zn2+ with high affinity, and the resulting enzymes are more efficient at RNA cleavage than most Mg2+-dependent nucleic acid enzymes under similar conditions.  相似文献   

13.
When the only solute present is a weak acid, HA, which penetrates as molecules only into a living cell according to a curve of the first order and eventually reaches a true equilibrium we may regard the rate of increase of molecules inside as See PDF for Equation where PM is the permeability of the protoplasm to molecules, Mo, denotes the external and Mi the internal concentration of molecules, Ai denotes the internal concentration of the anion A- and See PDF for Equation (It is assumed that the activity coefficients equal 1.) Putting PMFM = VM, the apparent velocity constant of the process, we have See PDF for Equation where e denotes the concentration at equilibrium. Then See PDF for Equation where t is time. The corresponding equation when ions alone enter is See PDF for Equation. where K is the dissociation constant of HA, PA is the permeability of the protoplasm to the ion pair H+ + A-, and Aie denotes the internal concentration of Ai at equilibrium. Putting PAKFM = VA, the apparent velocity constant of the process, we have See PDF for Equation and See PDF for Equation When both ions and molecules of HA enter together we have See PDF for Equation where Si = Mi + Ai and Sie is the value of Si at equilibrium. Then See PDF for Equation VM, VA, and VMA depend on FM and hence on the internal pH value but are independent of the external pH value except as it affects the internal pH value. When the ion pair Na+ + A- penetrates and Nai = BAi, we have See PDF for Equation and See PDF for Equation where P NaA is the permeability of the protoplasm to the ion pair Na+ + A-, Nao and Nai are the external and internal concentrations of Na+, See PDF for Equation, and V Na is the apparent velocity constant of the process. Equations are also given for the penetration of: (1) molecules of HA and the ion pair Na+ + A-, (2) the ion pairs H+ + A- and Na+ + A-, (3) molecules of HA and the ion pairs Na+ + A- and H+ + A-. (4) The penetration of molecules of HA together with those of a weak base ZOH. (5) Exchange of ions of the same sign. When a weak electrolyte HA is the only solute present we cannot decide whether molecules alone or molecules and ions enter by comparing the velocity constants at different pH values, since in both cases they will behave alike, remaining constant if FM is constant and falling off with increase of external pH value if FM falls off. But if a salt (e.g., NaA) is the only substance penetrating the velocity constant will increase with increase of external pH value: if molecules of HA and the ions of a salt NaA. penetrate together the velocity constant may increase or decrease while the internal pH value rises. The initial rate See PDF for Equation (i.e., the rate when Mi = 0 and Ai = 0) falls off with increase of external pH value if HA alone is present and penetrates as molecules or as ions (or in both forms). But if a salt (e.g., NaA) penetrates the initial rate may in some cases decrease and then increase as the external pH value increases. At equilibrium the value of Mi equals that of Mo (no matter whether molecules alone penetrate, or ions alone, or both together). If the total external concentration (So = Mo + Ao) be kept constant a decrease in the external pH value will increase the value of Mo and make a corresponding increase in the rate of entrance and in the value at equilibrium no matter whether molecules alone penetrate, or ions alone, or both together. What is here said of weak acids holds with suitable modifications for weak bases and for amphoteric electrolytes and may also be applied to strong electrolytes.  相似文献   

14.
Nucleotide pyrophosphatase from yeast was inhibited by thiols, o-phenanthroline, 8-hydroxyquinoline, EDTA, and 8-hydroxyquinoline-5-sulfonic acid. The inhibition by chelating agents was time and concentration dependent. Inhibition by EDTA was decreased by complexing the EDTA with metal ions before addition to the enzyme. The effectiveness of the metal ions in preventing inhibition by EDTA paralleled the stability constants of the EDTA-metal complexes. Partial recovery of EDTA-inhibited enzyme activity was achieved with Zn2+, Co2+, Fe2+, and Mn2+. Analyses for zinc in the purified enzyme by atomic absorption spectroscopy and by titration with 8-hydroxyquinoline-5-sulfonic acid revealed the presence of approximately 1 g atom/mol of enzyme (Mr 65,000). The data indicate that yeast nucleotide pyrophosphatase is a metalloenzyme in which the zinc plays some role in activity.  相似文献   

15.
Understanding the chemical speciation of metals in solution is necessary for evaluating their toxicity and mobility in soils. Soil samples from the Powder River Basin, Wyoming were extracted with distilled deionised H2O. Soil water extracts were subjected to chemical speciation to determine the relative distribution and chemical forms of copper (Cu), zinc (Zn) and lead (Pb) in acidic environments. As pyrite oxidised, the pH decreased from 6.6 to 2.4, concentration of dissolved sulfate (ST) increased from 259 to 4,388 mg L-1 and concentration of dissolved organic carbon (DOC) decreased from 56.9 to 14.4 mg L-1. Dissolved Cu concentrations ranged from 0.06 to 0.42 mg L-1 and dissolved Zn concentrations ranged from 0.084 to 4.60 mg L-1. Dissolved concentrations of Pb were found to be 0.003 to 0.046 mg L-1. Chemical speciation indicated that at near neutral pH, dissolved metal concentration in soil water extracts was dominated by DOC- metal complexes. At low pH, dissolved metal concentration in soil water extracts was dominated by free ionic forms (e.g. Cu2+, Zn2+, Pb2+) followed by ion pairs (e.g. CuSO4 0, ZnSO inf4 sup0 , PbSO in4 sup0 ). Results obtained in this study suggest that as soil pH decreased, the availability and mobility of metal ions increased due to the chemical form in which these metal ions are present in soil solutions.  相似文献   

16.
Myoglobin of Aplysia brasiliana (MbApB) has been recently purified and characterized and it was shown that the amino acid content is quite different from other myoglobins. A large number of aromatic residues was observed together with the existence of a unique histidine at the proximal heme position. Because of the numerous differences in the amino acid sequence between MbApB and whale myoglobin, it was interesting to investigate the interaction of metal ions like Cu2+ and Mn2+ with MbApB. In the present work Cu2+ complexes with Met-MbApB were studied and show a pH transition between different forms of coordination as revealed by EPR measurements. At high pH the EPR spectrum shows the coordination of the metal to at least four nitrogens from ϵ-NH3 lysine residues. At lower pH in the range 6.0–9.0 the copper binding site shows a pK change of some of the residues involved in metal coordination. Addition of one equivalent Cu2+ per protein does not alter the iron EPR signal. The manganese ion has one binding site in MbApB and a binding constant Ka = ( 11.5 ± 0.8) 103M−1. The binding of Cu2+ to MbApB is stronger than Mn2+, KaCu2+ >KaMn2+.  相似文献   

17.
Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn2+, which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni2+, Co2+, Cu2+, and Zn2+) readily induce the dimerization of Tp34; Cu2+ (50% effective concentration [EC50] = 1.7 μM) and Zn2+ (EC50 = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34''s likely role in metal ion homeostasis in T. pallidum.  相似文献   

18.
The recombination-activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn2+ ions in its catalytically required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well resolved. To address this issue, we determined the stoichiometry of Zn2+ ions bound to the catalytically active core region of RAG1 under various conditions. Using metal quantitation methods, we determined that core RAG1 can bind up to four Zn2+ ions. Stripping the full complement of bound Zn2+ ions to produce apoprotein abrogated DNA cleavage activity. Moreover, even partial removal of zinc-binding equivalents resulted in a significant diminishment of DNA cleavage activity, as compared to holo-Zn2+ core RAG1. Mutants of the intact core RAG1 and the isolated core RAG1 domains were studied to identify the location of zinc-binding sites. Significantly, the C-terminal domain in core RAG1 binds at least two Zn2+ ions, with one zinc-binding site containing C902 and C907 as ligands (termed the CC zinc site) and H937 and H942 coordinating a Zn2+ ion in a separate site (HH zinc site). The latter zinc-binding site is essential for DNA cleavage activity, given that the H937A and H942A mutants were defective in both in vitro DNA cleavage assays and cellular recombination assays. Furthermore, as mutation of the active-site residue E962 reduces Zn2+ coordination, we propose that the HH zinc site is located in close proximity to the DDE active site. Overall, these results demonstrate that Zn2+ serves an important auxiliary role for RAG1 DNA cleavage activity. Furthermore, we propose that one of the zinc-binding sites is linked to the active site of core RAG1 directly or indirectly by E962.  相似文献   

19.
Metal ion activation of saccharide binding has been studied for concana-valin A near pH 7.0. Although two metal ions, a transition metal ion and a Ca2+ ion, can bind, both are not required. Ca2+ alone, Mn2+ alone, or Ca2+ with other transition metal ions can activate this lectin. Only one Ca2+ ion per subunit or only one Mn2+ per subunit is sufficient. Metal ion binding was studied by magnetic resonance techniques and direct binding assays. Saccharide binding activity was monitored by following the fluorescence of 4-methylumbelliferyl a-D-mannopyranoside. When Ca2+ binds to demetalized concanavalin A, the transition metal ion site is hindered. When Mn2+ alone binds to demetalized concanavalin A, saccharide binding activity is induced. A subsequent conformational change, not necessary for carbohydrate binding activity, covers the Mn2+.  相似文献   

20.
The effects of Cu2+, Zn2+, Cd2+ and Pb2+ on growth and the biochemical characteristics of photosynthesis were more expressed in barley (Hordeum vulgare L.) than in maize (Zea mays L.) seedlings. The barley and maize seedlings exhibited retardation in shoot and root growth after exposure of Cu2+, Cd2+ and Pb2+. The Zn2+ions practically did not influence these characteristics. The total protein content of barley and maize roots declined with an increase in heavy metal ion concentrations. The protein content of barley shoots was only slighly decreased with an increase in heavy metal ion concentrations, but the protein content in maize shoots was increased under the same conditions. The chlorophyll content was decreased in barley shoots and increased in maize. The ribulose-l,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activities were decreased drastically by Cu2+, Cd2+ and Pb2+ in thein vivo experiments. The tested heavy metal ions affect photosynthesis probably mainly by inhibition of these key carboxylating enzymes: this mechanism was studied in thein vitro experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号