首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca2+/H+ antiporters. CAX2 has a low affinity for Ca2+ but can transport other metals including Mn2+ and Cd2+. Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca2+/H+ antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn2+/H+ antiport and, like cax1 mutants, reduced V-type H+-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter -glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H+ antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H+ gradients and the V-ATPase.  相似文献   

2.
Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87–95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87–95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.  相似文献   

3.
The over-expression of Arabidopsis CAX1 and CAX2 causes transgenic tomato plants to reveal severe Ca2+ deficiency-like symptoms such as tip-burn and/or blossom end rot, despite there being sufficient Ca2+ in each plant part. To correct the symptoms and to moderately enhance the calcium level, a worldwide vegetable tomato was genetically engineered using a modified Arabidopsis cation/H+ antiporter sCAX2A, a mutant form of Arabidopsis CAX2. Compared with the wild-type, the sCAX2A-expressing tomato plants demonstrated elevated Ca2+ levels in the fruits with almost no changes in the levels of Mn2+, Cu2+, and Fe2+. Moreover, expression of sCAX2A in tomato plants did not show any significant alterations in their morphological phenotypes. Unlike 35S::sCAX1 construct, sCAX2A antiporter gene driven by 35S promoter can be a valuable tool for enriching Ca2+ contents in the tomato fruit without additional accumulation of the undesirable cations.  相似文献   

4.
Bottle gourd (Lagenaria siceraria Standl.) has been commonly used as a source of rootstock for watermelon. To improve its performance as a rootstock without adverse effects on the scion, the bottle gourd was genetically engineered using a modified Arabidopsis Ca2+/H+ exchanger sCAX2B. This transporter provides enhanced Ca2+ substrate specificity and decreased Mn2+ transport capability. Our previous work demonstrated that sCAX2B bottle gourds were more robust and nutrient dense than controls. Here, several cucurbit crops were test-grafted onto the transgenic bottle gourd to determine its effect on the scions. The grafted watermelons and melons onto the transgenic rootstocks appeared to show more robust growth than the controls 35 days after greenhouse transplanting. Watermelon fruits with the watermelon/transgenic bottle gourd (scion/rootstock) combination demonstrated higher osmotic pressure and more soluble solids than controls. These results suggest that sCAX2B expression in the bottle gourd rootstock facilitates improved watermelon quality through the translocation of nutrients and/or water toward enhancing the biomass of scion.  相似文献   

5.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

6.
We demonstrate that carrots expressing the Arabidopsis H+/Ca2+ transporter CAX1 (Cation Exchanger 1) contained up to 50% more calcium (Ca) than plants transformed with control vectors. The CAX1-expressing carrots were fertile, and robust plant growth was seen in the majority of the transgenic plants. CAX1-expressing carrots were crossed to a commercial carrot variety to confirm that the increased Ca accumulation was mediated by CAX1-expression, and the increased Ca content was clearly correlated with the transgene. This study suggests that modulation of ion transporters could be an important means of increasing the Ca content of agriculturally important crops. To our knowledge, this study represents the first attempts to use biotechnology to increase the Ca content of an agriculturally important crop.  相似文献   

7.
Deregulated expression of an Arabidopsis H+/Ca2+ antiporter (sCAX1) in agricultural crops increases total calcium (Ca2+) but may result in yield losses due to Ca2+ deficiency-like symptoms. Here we demonstrate that co-expression of a maize calreticulin (CRT, a Ca2+ binding protein located at endoplasmic reticulum) in sCAX1-expressing tobacco and tomato plants mitigated these adverse effects while maintaining enhanced Ca2+ content. Co-expression of CRT and sCAX1 could alleviate the hypersensitivity to ion imbalance in tobacco plants. Furthermore, blossom-end rot (BER) in tomato may be linked to changes in CAX activity and enhanced CRT expression mitigated BER in sCAX1 expressing lines. These findings suggest that co-expressing Ca2+ transporters and binding proteins at different intracellular compartments can alter the content and distribution of Ca2+ within the plant matrix.  相似文献   

8.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

9.
The monoclonal antibody to the β-subunit of H+/K+-ATPase (mAbHKβ) cross-reacts with a protein that acts as a molecular chaperone for the structural maturation of sarcoplasmic reticulum (SR) Ca2+-ATPase. We partially purified a mAbHKβ-reactive 65-kDa protein from Xenopus ovary. After in-gel digestion and peptide sequencing, the 65-kDa protein was identified as methionine aminopeptidase II (MetAP2). The effects of MetAP2 on SR Ca2+-ATPase expression were examined by injecting the cRNA for MetAP2 into Xenopus oocytes. Immunoprecipitation and pulse-chase experiments showed that MetAP2 was transiently associated with the nascent SR Ca2+-ATPase. Synthesis of functional SR Ca2+-ATPase was facilitated by MetAP2 and prevented by injecting an antibody specific for MetAP2. These results suggest that MetAP2 acts as a molecular chaperone for SR Ca2+-ATPase synthesis.  相似文献   

10.
Summary The toxicity of chromium and tin on growth, photosynthetic carbon-fixation, oxygen evolution, heterocyst differentiation and nitrogenase activity ofAnabaena doliolum and its interaction with bivalent cations has been studied. Some interacting cations, viz. Ca2+, Mg2+ and Mn2+, substantially antagonised the toxic effects of chromium and tin with reference to growth, heterocyst differentiation and nitrogenase activity in the following hierarchal sequence: Ca2+ > Mg2+ > Mn2+. However, the sequence of hierarchy was Mg2+ > Ca2+ > Mn2+ for carbon fixation and Mn2+ > Mg2+ > Ca2+ for photosynthetic oxygen evolution. Synergistically inhibitory patterns were noticed for all the parameters, viz. growth,14CO2 uptake, oxygen evolution, heterocyst differentiation and nitrogenase activity ofA. doliolum when Ni2+, Co2+ and Zn2+ were combined with the test metals in the growth medium. These cations followed the following sequence of synergistic inhibition: Ni2+ > Co2+ > Zn2+. Among all the interacting cations, Ca2+, Mg2+ and Mn2+ exhibited antagonistic effects which relieved the test cyanobacterium from metal toxicity. In contrast to this, Ni2+, CO2+ and Zn2+ showed synergistic inhibition which potentiating the toxicity of test metals in the N2-fixing cyanobacteriumA. doliolum. It is evident from the present study that bivalent cations, viz. Ca2+, Mg2+, Mn2+, Ni2+, Co2+ and Zn2+, may appreciably regulate the toxicity of heavy metals in N2-fixing cyanobacteria if present in aquatic media.  相似文献   

11.
12.
T. Hayama  M. Tazawa 《Protoplasma》1980,102(1-2):1-9
Summary The effects of Ca2+ and other cations on chloroplast rotation in isolated cytoplasmic droplets ofChara were investigated by iontophoretically injecting them. Chloroplast rotation stopped immediately after Ca2+ injection and recovered with time, suggesting the existence of a Ca2+-sequestering system in the cytoplasm. The Ca2+ concentration necessary for the stoppage was estimated to be >10–4M. Sr2+ had the same effect as Ca2+. Mn2+ and Cd2+ induced a gradual decrease in the rotation rate with low reversibility. K+ and Mg2+ had no effects. Ba2+ had effects sometimes similar to Ca2+ or Sr2+ and sometimes similar to Mn2+ or Cd2+.Reversible inhibition by Ca2+, together with its specificity, strongly supports the hypothesis that a transient increase in the Ca2+ concentration in the cytoplasm upon membrane excitation directly stops the cytoplasmic streaming inCharaceae internodes (Hayama et al. 1979).  相似文献   

13.
An N-acetyl-d-lactosamine (LacNAc) specific lectin from tubers of Alocasia cucullata was purified by affinity chromatography on asialofetuin-linked amino activated silica. The pure lectin showed a single band in SDS-PAGE at pH 8.8 and was a homotetramer with a subunit molecular mass of 13.5 kDa and native molecular mass of 53 kDa. It was heat stable up to 55 °C for 15 min and showed optimum hemagglutination activity from pH 2 to 11. The lectin was affected by denaturing agents such as urea (2 m), thiourea (2 m) and guanidine–HCl (0.5 m) and did not require Ca2+ and Mn2+ for its activity. It was a potent mitogen at 10 μg/ml towards human peripheral blood mononuclear cells with 50% growth inhibitory potential towards SiHa (human cervix ) cancer cell line at 100 μg/ml.  相似文献   

14.
The effect of various metals and regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase activity in the plasma membranes of rat liver was investigated. Of various metals (Zn2+, Cu2+, Ni2+, Mn2+, Co2+ and Al3+; 100 M as a final concentration), Mn2+ and Co2+ increased markedly (Ca2+–Mg2+)-ATPase activity, while other metals had no effect. When Ca2+ was not added into enzyme reaction mixture, Mn2+ and Co2+ (25–100 M) did not significantly increase the enzyme activity, indicating that heavy metals act on Ca2+-stimulated phosphorylation of the enzyme. Meanwhile, regucalcin (0.25–1.0 M) caused a remarkable elevation of (Ca2+–Mg2+)-ATPase activity. This increase was not inhibited by the presence of 100 M vanadate, although the effects of Mn2+ and Co2+ (100 M) were inhibited by vanadate. Also, the inhibition of the Mn2+ and Co2+ effects by vanadate was not seen in the presence of regucalcin. Moreover, regucalcin (0.5 M) increased significantly the enzyme activity in the absence of Ca2+. This effect of regulcalcin was not altered by increasing concentrations of Ca2+ added, indicating that the regucalcin effect does not depend on Ca2+. The present results suggest that regucalcin activates directly (Ca2+–Mg2+)-ATPase in liver plasma membranes, and that the activation is not involved in the Ca2+-dependent phosphorylation of the enzyme.  相似文献   

15.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

16.
Previous results with potato tuber discs showed that a treatment with abscisic acid stimulated K+ uptake. In this investigation, we determine the relationship between increased K' uptake and H+extrusion, and Ca2+ fluxes by treating tissues with specific Ca2+ channel blocker (La3+), calmodulin (CaM) inhibitors (chlorpromazine and W7), and with Ca2+ ionophore (A23187). K+ uptake increased with increasing external pH whether tissues were treated with ABA or not. Treatment of tissues with La3+ inhibited K+ uptake, whereas CaM inhibitors have no effect. By contrast ABA and A23187 produced a synergistic effect, suggesting that ABA may act in part, on K+ uptake, like a Ca2+ agonist, in accord with Huddart's hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

18.
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 μM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

19.
Kumar GN  Iyer S  Knowles NR 《Planta》2007,227(1):25-36
During 30-months of storage at 4°C, potato (Solanum tuberosum L.) tubers progressively lose the ability to produce superoxide in response to wounding, resist microbial infection, and develop a suberized wound periderm. Using differentially aged tubers, we demonstrate that Strboh A is responsible for the wound-induced oxidative burst in potato and aging attenuates its expression. In vivo superoxide production and NADPH oxidase (NOX) activity from 1-month-old tubers increased to a maximum 18–24 h after wounding and then decreased to barely detectable levels by 72 h. Wounding also induced a 68% increase in microsomal protein within 18 h. These wound-induced responses were lost over a 25- to 30-month storage period. Superoxide production and NOX activity were inhibited by diphenylene iodonium chloride, a specific inhibitor of NOX, which in turn effectively inhibited wound-healing and increased susceptibility to microbial infection and decay in 1-month-old tubers. Wound-induced superoxide production was also inhibited by EGTA-mediated destabilization of membranes. The ability to restore superoxide production to EGTA-treated tissue with Ca+2 declined with advancing tuber age, likely a consequence of age-related changes in membrane architecture. Of the five homologues of NOX (Strboh A-D and F), wounding induced the expression of Strboh A in 6-month-old tubers but this response was absent in tubers stored for 25–30 months. Strboh A thus mediates the initial burst of superoxide in response to wounding of potato tubers; loss of its expression increases the susceptibility to microbial infection and contributes to the age-induced loss of wound-healing ability.  相似文献   

20.
Zhao J  Barkla BJ  Marshall J  Pittman JK  Hirschi KD 《Planta》2008,227(3):659-669
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号