首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene expression profiles of apoptotic neurons   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
4.
Defects in mitochondrial oxidative metabolism, in particular decreased activity of cytochrome c oxidase, have been reported in Alzheimer disease tissue and in cultured cells that overexpress amyloid precursor protein. Mitochondrial dysfunction contributes to neurodegeneration in Alzheimer disease partly through formation of reactive oxygen species and the release of sequestered molecules that initiate programmed cell death pathways. The heat shock proteins (HSP) are cytoprotective against a number of stressors, including accumulations of misfolded proteins and reactive oxygen species. We reported on the property of Hsp70 to protect cultured neurons from cell death caused by intraneuronal beta-amyloid. Here we demonstrate that Hsp60, Hsp70, and Hsp90 both alone and in combination provide differential protection against intracellular beta-amyloid stress through the maintenance of mitochondrial oxidative phosphorylation and functionality of tricarboxylic acid cycle enzymes. Notably, beta-amyloid was found to selectively inhibit complex IV activity, an effect selectively neutralized by Hsp60. The combined effect of HSPs was to reduce the free radical burden, preserve ATP generation, decrease cytochrome c release, and prevent caspase-9 activation, all important mediators of beta-amyloid-induced neuronal dysfunction and death.  相似文献   

5.
1. The cellular prion protein (PrPC) is expressed widely in neural and nonneural tissues at the highest level in neurons in the central nervous system (CNS).2. Recent studies indicated that transgenic mice with the cytoplasmic accumulation of PrPC exhibited extensive neurodegeneration in the cerebellum, although the underlying mechanism remains unknown. To identify the genes whose expression is controlled by overexpression of PrPC in human cells, we have established a stable PrPC-expressing HEK293 cell line designated P1 by the site-specific recombination technique.3. Microarray analysis identified 33 genes expressed differentially between P1 and the parent PrPC-non-expressing cell line among 12,814 genes examined. They included 18 genes involved in neuronal and glial functions, 5 related to production of extracellular matrix proteins, and 2 located in the complement cascade.4. Northern blot analysis verified marked upregulation in P1 of the brain-specific protein phosphatase 2A beta subunit (PPP2R2B), a causative gene of spinocerebellar ataxia 12, and the cerebellar degeneration-related autoantigen (CDR34) gene associated with development of paraneoplastic cerebellar degeneration.5. These results indicate that accumulation of PrPC in the cell caused aberrant regulation of a battery of the genes important for specific neuronal function. This represents a possible mechanism underlying PrPC-mediated selective neurodegeneration.  相似文献   

6.
Familial amyotrophic lateral sclerosis (FALS)-linked mutations in copper-zinc superoxide dismutase (SOD1) cause motor neuron death through one or more acquired toxic properties. We analyzed the molecular mechanism underlying motor neuron degeneration in the transgenic mouse model expressing the SOD1 gene with G93A mutation. Using cDNA microarray, the differentially expressed genes were identified in the spinal cords of G93A mice, 30 being elevated and seven decreased. cDNA microarray analysis to monitor gene expression during neurodegeneration revealed an up-regulation of genes related to an inflammatory process, such as the tumor necrosis factor-alpha (TNF-alpha) gene, resulting from glial cell activation, together with the change in apoptosis-related gene expression, such as caspase-1. The increased expression of the inflammation- and apoptosis-related genes occurred at 11 weeks of age in the presymptomatic stage prior to motor neuron death. These results suggest a mechanism of neurodegeneration that includes an inflammatory response as an important component. Thus, ALS has paralleled other neurodegenerative disorders, such as Alzheimer's and prion diseases, in which the inflammatory process is believed to participate directly in neuronal death.  相似文献   

7.
8.
A novel peptide prevents death in enriched neuronal cultures   总被引:7,自引:0,他引:7  
We have recently cloned a novel protein (activity-dependent neuroprotective protein, ADNP) containing an 8-amino-acid, femtomolar-acting peptide, NAPVSIPQ (NAP). Here we show, for the first time, that NAP exerted a protective effect on glia-depleted neurons in culture. The number of surviving neurons was assessed in cerebral cortical cultures derived from newborn rats. In these cultures, a 24-h treatment with the beta-amyloid peptide (the Alzheimer's disease associated toxin) induced a 30-40% reduction in neuronal survival that was prevented by NAP (10(-13)-10(-11) M). Maximal survival was achieved at NAP concentrations of 10(-12) M. In a second set of experiments, a 5-day incubation period, with NAP added once (at the beginning of the incubation period) exhibited maximal protection at 10(-10) M NAP. In a third set of experiments, a 10-min period of glucose deprivation resulted in a 30-40% neuronal death that was prevented by a 24-h incubation with NAP. Glucose deprivation coupled with beta-amyloid treatment did not increase neuronal death, suggesting a common pathway. We thus conclude, that NAP can prevent neurotoxicity associated with direct action of the beta-amyloid peptide on neurons, perhaps through protection against impaired glucose metabolism.  相似文献   

9.
10.
11.
Beta-amyloid peptide is considered to be responsible for the formation of senile plaques that accumulate in the brains of patients with Alzheimer's disease. There has been compelling evidence supporting the idea that beta-amyloid-induced cytotoxicity is mediated through the generation of reactive oxygen intermediates (ROIs). Considerable attention has been focused on identifying phytochemicals that are able to scavenge excess ROIs, thereby protecting against oxidative stress and cell death. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin found in the skin of grapes, has strong antioxidative properties that have been associated with the protective effects of red wine consumption against coronary heart disease ("the French paradox"). In this study, we have investigated the effects of resveratrol on beta-amyloid-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with beta-amyloid exhibited increased accumulation of intracellular ROI and underwent apoptotic death as determined by characteristic morphological alterations and positive in situ terminal end-labeling (TUNEL staining). Beta-amyloid treatment also led to the decreased mitochondrial membrane potential, the cleavage of poly(ADP-ribose)polymerase, an increase in the Bax/Bcl-X(L) ratio, and activation of c-Jun N-terminal kinase. Resveratrol attenuated beta-amyloid-induced cytotoxicity, apoptotic features, and intracellular ROI accumulation. Beta-amyloid transiently induced activation of NF-kappaB in PC12 cells, which was suppressed by resveratrol pretreatment.  相似文献   

12.
13.
Cnidarians represent the first animal phylum with an organized nervous system and a complex active behavior. The hydra nervous system is formed of sensory-motoneurons, ganglia neurons and mechanoreceptor cells named nematocytes, which all differentiate from a common stem cell. The neurons are organized as a nerve net and a subset of neurons participate in a more complex structure, the nerve ring that was identified in most cnidarian species at the base of the tentacles. In order to better understand the genetic control of this neuronal network, we analysed the expression of evolutionarily conserved regulatory genes in the hydra nervous system. The Prd-class homeogene prdl-b and the nuclear orphan receptor hyCOUP-TF are expressed at strong levels in proliferating nematoblasts, a lineage where they were found repressed during patterning and morphogenesis, and at low levels in distinct subsets of neurons. Interestingly, Prd-class homeobox and COUP-TF genes are also expressed during neurogenesis in bilaterians, suggesting that mechanoreceptor and neuronal cells derive from a common ancestral cell. Moreover, the Prd-class homeobox gene prdl-a, the Antp-class homeobox gene msh, and the thrombospondin-related gene TSP1, which are expressed in distinct subset of neurons in the adult polyp, are also expressed during early budding and/or head regeneration. These data strengthen the fact that two distinct regulations, one for neurogenesis and another for patterning, already apply to these regulatory genes, a feature also identified in bilaterian related genes.  相似文献   

14.
The aberrant metabolism of beta-amyloid precursor protein (APP) and the progressive deposition of its derived fragment beta-amyloid peptide are early and constant pathological hallmarks of Alzheimer's disease. Because APP is able to function as a cell surface receptor, we investigated here whether a disruption of the normal function of APP may contribute to the pathogenic mechanisms in Alzheimer's disease. To this aim, we generated a specific chicken polyclonal antibody directed against the extracellular domain of APP, which is common with the beta-amyloid precursor-like protein type 2. Exposure of cultured cortical neurons to this antibody (APP-Ab) induced cell death preceded by neurite degeneration, oxidative stress, and nuclear condensation. Interestingly, caspase-3-like protease was not activated in this neurotoxic action suggesting a different mode of cell death than classical apoptosis. Further analysis of the molecular mechanisms revealed a calpain- and calcineurin-dependent proteolysis of the neuroprotective calcium/calmodulin-dependent protein kinase IV and its nuclear target protein cAMP responsive element binding protein. These effects were abolished by the G protein inhibitor pertussis toxin, strongly suggesting that APP binding operates via a GTPase-dependent pathway to cause neuronal death.  相似文献   

15.
Cognitive deficits in survivors of traumatic brain injury (TBI) are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays) to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive) or surviving (Fluoro-Jade- negative) pyramidal neurons obtained by laser capture microdissection (LCM). In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER) stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.  相似文献   

16.
17.
Molecular mechanisms behind the etiology and pathophysiology of major depressive disorder and suicide remain largely unknown. Recent molecular studies of expression of serotonin, GABA and CRH receptors in various brain regions have demonstrated that molecular factors may contribute to the development of depressive disorder and suicide behaviour. Here, we used microarray analysis to examine the expression of genes in brain tissue (frontopolar cortex) of individuals who had been diagnosed with major depressive disorder and died by suicide, and those who had died suddenly without a history of depression. We analyzed the list of differentially expressed genes using pathway analysis, which is an assumption-free approach to analyze microarray data. Our analysis revealed that the differentially expressed genes formed functional networks that were implicated in cell to cell signaling related to synapse maturation, neuronal growth and neuronal complexity. We further validated these data by randomly choosing (100 times) similarly sized gene lists and subjecting these lists to the same analyses. Random gene lists did not provide highly connected gene networks like those generated by the differentially expressed list derived from our samples. We also found through correlational analysis that the gene expression of control participants was more highly coordinated than in the MDD/suicide group. These data suggest that among depressed individuals who died by suicide, wide ranging perturbations of gene expression exist that are critical for normal synaptic connectively, morphology and cell to cell communication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号