首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the ontogenetic profiles in left and right ventricle of genes implicated in cardiac growth, including mineralocorticoid (MR) and glucocorticoid (GR) receptor, 11 beta-hydroxysteroid dehydrogenase (11beta-HSD) 1 and 2 and genes of the angiotensin system and insulin-like growth factor (IGF) family. Samples from left and right ventricles (LV, RV) were collected from hearts of sheep fetuses at 80, 100, 120, 130, and 145 days of gestation and from newborn lambs. Quantitative real-time PCR was performed to determine the MR, GR, 11beta-HSD 1 and 2, angiotensin converting enzyme (ACE) 1 and 2, IGF1, IGF2, IGF receptors IGF-1R and IGF-2R, and IGF-binding proteins (IGFBP) 2 and 3. In the LV, MR and GR both decreased toward term. In the RV, MR and GR expression did not decrease, but both 11beta-HSD 1 and 2 mRNA levels increased after birth. ACE1 expression in LV and RV sharply increases just before parturition, whereas ACE2 decreased in the LV and RV in late gestation. IGF2, IGF2R, and IGFBP2 expression levels substantially decreased in late gestation in LV and RV; IGF2R also decreased with age in LV. These patterns suggest that reduced expression of genes related to IGF and angiotensin II action occur as proliferative activity declines and terminal differentiation occurs in the late gestation fetal heart.  相似文献   

2.
Clinical and animal studies indicate that intrauterine growth restriction (IUGR) following uteroplacental insufficiency (UPI) reduces nephron number and predisposes toward renal insufficiency early in life and increased risk of adult-onset hypertension. In this study, we hypothesized that the inducible enzyme cyclooxygenase-2 (COX-2), a pivotal protein in nephrogenesis, constitutes a mechanism through which UPI and subsequent glucocorticoid overexposure can decrease nephron number. We further hypothesized that UPI downregulates the key enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts corticosterone to inert 11-dehydrocorticosterone, thereby protecting both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) from the actions of corticosterone. Following bilateral uterine ligation on the pregnant rat, UPI significantly decreased renal COX-2, 11beta-HSD2, and GR mRNA and protein levels, but upregulated expression of MR at birth. At day 21 of life, 11beta-HSD2, GR, and also MR mRNA and protein levels were downregulated. UPI did not affect blood pressures (BP) at day 21 of life but significantly increased systolic BP in both genders at day 140. We conclude that in our animal model, UPI decreases fetal COX-2 expression during a period of active nephrogenesis in the IUGR rat, which is also characterized by decreased nephron number and adult-onset hypertension.  相似文献   

3.
4.
Umbilical cord compression (UCC) sufficient to reduce umbilical blood flow by 30% for 3 days, results in increased fetal plasma cortisol and catecholamines that are likely to promote maturation of the fetal lung and brown adipose tissue (BAT). We determined the effect of UCC on the abundance of uncoupling protein (UCP)1 (BAT only) and -2, glucocorticoid receptor (GR), and 11beta-hydroxysteroid dehydrogenase (11beta-HSD)1 and -2 mRNA, and mitochondrial protein voltage-dependent anion channel (VDAC) and cytochrome c in these tissues. At 118 +/- 2 days of gestation (dGA; term approximately 145 days), 14 fetuses were chronically instrumented. Eight fetuses were then subjected to 3 days of UCC from 125 dGA, and the remaining fetuses were sham operated. All fetuses were then exposed to two 1-h episodes of hypoxemia at 130 +/- 1 and 134 +/- 1 dGA before tissue sampling at 137 +/- 2 dGA. In both tissues, UCC upregulated UCP2 and GR mRNA, plus VDAC and cytochrome c mitochondrial proteins. In lung, UCC increased 11beta-HSD1 mRNA but decreased 11beta-HSD2 mRNA abundance, a pattern reversed for BAT. UCC increased UCP1 mRNA and its translated protein in BAT. UCP2, GR, 11beta-HSD1 and -2 mRNA, plus VDAC and cytochrome c protein abundance were all significantly correlated with fetal plasma cortisol and catecholamine levels, but not thyroid hormone concentrations, in the lung and BAT of UCC fetuses. In conclusion, chronic UCC results in precocious maturation of the fetal lung and BAT mitochondria, an adaptation largely mediated by the surge in fetal plasma cortisol and catecholamines that accompanies UCC.  相似文献   

5.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) dictates specificity for the mineralocorticoid receptor (MR) by converting the active steroid cortisol to cortisone in man (corticosterone to 11-dehydrocorticosterone in rodents), leaving aldosterone to occupy the MR. However cortisol is the principal circulating glucocorticoid in man and 11 beta-HSD, distributed in a tissue specific fashion, may represent a powerful mechanism in regulating exposure of active steroid to the glucocorticoid receptor (GR). A detailed localization study of 11 beta-HSD gene expression and activity in numerous rat tissues has been performed and compared with the presence of GR mRNA. 11 beta-HSD mRNA (1.4 kB) measured by hybridization to a cDNA derived from hepatic 11 beta-HSD, and enzyme activity, measured by percentage conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone by tissue homogenate, was widespread, present in all tissues studied except spleen, brain cortex and heart. There was a close correlation between tissue 11 beta-HSD mRNA levels and activity (r = 0.91, P less than 0.001) suggesting pretranslational regulation of the enzyme at a tissue level. There was also close co-localization of GR mRNA (7 kB), measured by hybridization to a rat GR cRNA probe, and enzyme mRNA/activity in every tissue studied except heart and brain cortex in which GR mRNA was found. In the mineralocorticoid target tissues kidney and colon, additional 11 beta-HSD mRNA bands were seen (kidney 1.8 kB, colon 3.4 kB), suggesting the presence of multiple dehydrogenase species. 11 beta-HSD is widely distributed and suitably placed to modulate ligand occupancy of the GR. The possibility of multiple dehydrogenase species in mineralocorticoid target tissues is consistent with the hypothesis that the ubiquitous 'native' 1.4 kB hepatic enzyme regulates the GR, and these separate dehydrogenases regulate the MR.  相似文献   

6.
7.
11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 2 has been considered to protect the mineralocorticoid receptor (MR) by converting 11beta-hydroxyglucocorticoids into their inactive 11-keto forms, thereby providing specificity to the MR for aldosterone. To investigate the functional protection of the MR by 11beta-HSD2, we coexpressed epitope-tagged MR and 11beta-HSD2 in HEK-293 cells lacking 11beta-HSD2 activity and analyzed their subcellular localization by fluorescence microscopy. When expressed alone in the absence of hormones, the MR was both cytoplasmic and nuclear. However, when coexpressed with 11beta-HSD2, the MR displayed a reticular distribution pattern, suggesting association with 11beta-HSD2 at the endoplasmic reticulum membrane. The endoplasmic reticulum membrane localization of the MR was observed upon coexpression only with 11beta-HSD2, but not with 11beta-HSD1 or other steroid-metabolizing enzymes. Aldosterone induced rapid nuclear translocation of the MR, whereas moderate cortisol concentrations (10-200 nm) did not activate the receptor, due to 11beta-HSD2-dependent oxidation to cortisone. Compromised 11beta-HSD2 activity (due to genetic mutations, the presence of inhibitors, or saturating cortisol concentrations) led to cortisol-induced nuclear accumulation of the MR. Surprisingly, the 11beta-HSD2 product cortisone blocked the aldosterone-induced MR activation by a strictly 11beta-HSD2-dependent mechanism. Our results provide evidence that 11beta-HSD2, besides inactivating 11beta-hydroxyglucocorticoids, functionally interacts with the MR and directly regulates the magnitude of aldosterone-induced MR activation.  相似文献   

8.
In squirrel monkeys (Saimiri spp.), cortisol circulates at levels much higher than those seen in man and other Old World primates, but squirrel monkeys exhibit no physiologic signs of the mineralocorticoid effects of cortisol. These observations suggest that squirrel monkeys have mechanisms for protection of the mineralocorticoid receptor (MR) from these high levels of cortisol. We previously showed that the serum cortisol to cortisone ratio in these animals is low relative to that in human serum, suggesting that production of the MR protective enzyme, 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), is increased in squirrel monkeys. Here, we directly evaluate whether increased production of 11beta-HSD2, which inactivates cortisol to cortisone, is a mechanism for protection of MR. In vitro assays showed that 11beta-HSD2 activity in squirrel monkey kidney microsomes was 3 to 7 times higher than that seen in kidney microsomes from pig or rabbit. 11beta-HSD2 protein detected by Western blot analysis was 4 to 9 times greater in squirrel monkey microsomes than in pig or rabbit microsomes. Comparison of the effect of expression of either human or squirrel monkey 11beta-HSD2 on MR transactivation activity showed similar inhibition of MR response to cortisol by both enzymes, indicating that the intrinsic activities of the human and squirrel monkey enzymes are similar. These findings suggest that one mechanism by which squirrel monkeys protect the MR from activation by high cortisol levels in the kidney is by upregulation of 11beta-HSD2 activity through increased production of the enzyme.  相似文献   

9.
Sun K  He P  Yang K 《Biology of reproduction》2002,67(5):1450-1455
Glucocorticoids are involved in the modulation of the release of parturition hormones from the fetal membranes and placenta, where their actions are determined by the prereceptor glucocorticoid metabolizing enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Two distinct isozymes of 11beta-HSD have been characterized. In the fetal membranes, 11beta-HSD1 is the predominate isozyme; it converts biologically inert 11-ketone glucocorticoid metabolites into active glucocorticoids. Sequence analysis of the cloned 11beta-HSD1 gene revealed a putative glucocorticoid response element in the promoter region. However, whether glucocorticoids modulate 11beta-HSD1 expression in the fetal membranes is unknown. In this study, 11beta-HSD1 and glucocorticoid receptor (GR) were coexpressed in the chorionic trophoblast. Radiometric conversion assay and Northern blot analysis revealed that both 11beta-HSD1 reductase activity and mRNA levels were increased by dexamethasone (1 microM, 0.1 microM) in the cultured chorionic trophoblast, and the effects were blocked by GR antagonist RU486 (1 microM). Prior induction of 11beta-HSD1 by dexamethasone potentiated the subsequent stimulation of prostaglandin H synthetase 2 expression and secretion of prostaglandin E(2) by cortisone in the chorionic trophoblast. There is colocalization of 11beta-HSD1 and GR in the chorionic trophoblast. By binding to GR, glucocorticoids induce the expression of 11beta-HSD1 by a possible intracrine mechanism, thereby amplifying the actions of glucocorticoids on prostaglandin production in the fetal membranes. This cascade of events initiated by glucocorticoids may play an important role in the positive feed-forward mechanisms of labor.  相似文献   

10.
Growth of the fetal heart involves cardiomyocyte enlargement, division, and maturation. Insulin-like growth factor-1 (IGF-1) is implicated in many aspects of growth and is likely to be important in developmental heart growth. IGF-1 stimulates the IGF-1 receptor (IGF1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). We hypothesized that IGF-1 stimulates cardiomyocyte proliferation and enlargement through stimulation of the ERK cascade and stimulates cardiomyocyte differentiation through the PI3K cascade. In vivo administration of Long R3 IGF-1 (LR3 IGF-1) did not stimulate cardiomyocyte hypertrophy but led to a decreased percentage of cells that were binucleated in vivo. In culture, LR3 IGF-1 increased myocyte bromodeoxyuridine (BrdU) uptake by three- to five-fold. The blockade of either ERK or PI3K signaling (by UO-126 or LY-294002, respectively) completely abolished BrdU uptake stimulated by LR3 IGF-1. LR3 IGF-1 did not increase footprint area, but as expected, phenylephrine stimulated an increase in binucleated cardiomyocyte size. We conclude that 1) IGF-1 through IGF1R stimulates cardiomyocyte division in vivo; hyperplastic growth is the most likely explanation of IGF-1 stimulated heart growth in vivo; 2) IGF-1 through IGF1R does not stimulate binucleation in vitro or in vivo; 3) IGF-1 through IGF1R does not stimulate hypertrophy either in vivo or in vitro; and 4) IGF-1 through IGF1R requires both ERK and PI3K signaling for proliferation of near-term fetal sheep cardiomyocytes in vitro.  相似文献   

11.
To gain insight into the role of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes and actions of glucocorticoids in the murine placenta and uterus, the expression pattern of the mRNA for 11beta-HSD1 and 11beta-HSD2 and the glucocorticoid receptor (GR) protein were determined from Embryonic Day 12.5 (E12.5, term = E19) to E18.5 by in situ hybridization and immunohistochemistry, respectively. Consistent with its putative role in regulating the transplacental passage of maternal glucocorticoid to the fetus, 11beta-HSD2 mRNA was highly expressed in the labyrinthine zone (the major site of maternal/fetal exchange) at E12.5, and its level decreased dramatically at E16.5, when it became barely detectable. Remarkably, the silencing of 11beta-HSD2 gene expression coincided with the onset of 11beta-HSD1 gene expression in the labyrinth at E16.5 when moderate levels of 11beta-HSD1 mRNA were detected and maintained to E18.5. By contrast, neither 11beta-HSD1 mRNA nor 11beta-HSD2 mRNA were detected in any cell types within the basal zone from E12.5 to E18.5. Moreover, the expression of 11beta-HSD1 and 11beta-HSD2 in the decidua exhibited a high degree of cell specificity in that the mRNA for both 11beta-HSD1 and 11beta-HSD2 was detected in the decidua-stroma but not in the compact decidua. A distinct pattern was also observed within the endometrium where the mRNA for 11beta-HSD1 was expressed in the epithelium, whereas that for 11beta-HSD2 was confined strictly to the stroma. By comparison, the expression of GR in the placenta and uterus was ubiquitous and unremarkable throughout late pregnancy. In conclusion, the present study demonstrates for the first time remarkable spatial and temporal patterns of expression of 11beta-HSD1 and 11beta-HSD2 and GR in the murine placenta and uterus and highlights the intricate control of not only transplacental passage of maternal glucocorticoid to the fetus but also local glucocorticoid action during late pregnancy.  相似文献   

12.
13.
We assessed ANG II type 1 (AT(1)) and type 2 (AT(2)) receptor (R) expression and functional recovery after ischemia-reperfusion with or without AT(1)R/AT(2)R blockade in isolated working rat hearts. Groups of six hearts were subjected to global ischemia (30 min) followed by reperfusion (30 min) and exposed to no drug and no ischemia-reperfusion (control), ischemia-reperfusion and no drug, and ischemia-reperfusion with losartan (an AT(1)R antagonist; 1 micromol/l), PD-123319 (an AT(2)R antagonist; 0.3 micromol/l), N(6)-cyclohexyladenosine (CHA, a cardioprotective adenosine A(1) receptor agonist; 0.5 micromol/l as positive control), enalaprilat (an ANG-converting enzyme inhibitor; 1 micromol/l), PD-123319 + losartan, ANG II (1 nmol/l), or ANG II + losartan. Compared with controls, ischemia-reperfusion decreased AT(2)R protein (Western immunoblots) and mRNA (Northern immunoblots, RT-PCR) and impaired functional recovery. PD-123319 increased AT(2)R protein and mRNA and improved functional recovery. Losartan increased AT(1)R mRNA (but not AT(1)R/AT(2)R protein) and impaired recovery. Other groups (except CHA) did not improve recovery. The results suggest that, in isolated working hearts, AT(2)R plays a significant role in ischemia-reperfusion and AT(2)R blockade induces increased AT(2)R protein and cardioprotection.  相似文献   

14.
The 11beta-hydroxysteroid dehydrogenase (11beta-HSD) exists in two isoforms, 11beta-HSD1 and 11beta-HSD2. 11beta-HSD1 generates active cortisol from cortisone and appears to be involved in insulin resistant states. 11beta-HSD2 protects the mineralocorticoid receptor from inappropriate activation by glucocorticoids and is important to prevent sodium retention and hypertension. The purposes of the present study were to develop two real-time PCR assays to assess 11beta-HSD1 and 11beta-HSD2 mRNA expression and to evaluate the tissue distribution of the two isoforms in dogs. Thirteen different tissues of 10 healthy dogs were evaluated. Both real-time PCR assays were highly specific, sensitive and reproducible. Highest 11beta-HSD1 mRNA expression was seen in liver, lung, and renal medulla; highest 11beta-HSD2 mRNA expression in renal cortex, adrenal gland, and renal medulla. Higher 11beta-HSD1 than 11beta-HSD2 mRNA levels were found in all tissues except adrenal gland, colon, and rectum. Our results demonstrate that the basic tissue distribution of 11beta-HSD1 and 11beta-HSD2 in dogs corresponds to that in humans and rodents. In a next step 11beta-HSD1 and 11beta-HSD2 expression should be assessed in diseases like obesity, hypercortisolism, and hypertension to improve our knowledge about 11beta-HSD activity, to evaluate the dog as a model for humans and to potentially find new therapeutic options.  相似文献   

15.
16.
OBJECTIVES: The set point of cortisol-cortisone conversion is shifted in the direction of cortisone by the inhibition of the activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) during adult GH replacement and in active acromegaly. Additionally, both fat mass and insulin may modulate 11beta-HSD1 and are both influenced by changes in GH status. This study examined the relative direct contribution of GH/IGF1 in modulating cortisol metabolism. METHODS: Overall cortisol/cortisone conversion (ratio of urine 11-hydroxy-/11-oxo-cortisol metabolites; Fm/Em), insulin sensitivity (homeostatic model assessment; HOMA %S) and fat mass (DXA) were examined in parallel in 6 patients (mean age 53 years, range 42-76; 4 males, 2 females) with previously untreated active acromegaly during 6 months of therapy with Sandostatin LAR (20-30 mg i.m. 4 weekly). All but 1 patient had normal ACTH reserve. RESULTS: At baseline, Pearson correlation demonstrated an inverse relationship between serum GH (mean of a 5-point day curve) and Fm/Em (r = -0.83, p = 0.04) and a trend towards an inverse relationship between HOMA %S and Fm/Em (r = -0.79, p = 0.06) but no other patterns were evident. During the course of treatment, serum GH decreased from 9.9 +/- 6.4 (mean +/- SD) to 3.5 +/- 3.1 ng/ml (p < 0.01) and serum IGF-1 from 785 +/- 268 to 431 +/- 156 ng/ml (p < 0.005). Fm/Em increased from 0.52 +/- 0.1 to 0.75 +/- 0.08 (p < 0.03) consistent with increased 11beta-HSD1 activity. There were no significant changes in truncal fat percentage (33.0 +/- 9.0 vs. 33.0 +/- 8.2) or insulin sensitivity (HOMA %S: 37.1 +/- 8.6 vs. 52.8 +/- 33.7). CONCLUSIONS: Modulation of cortisol metabolism during treatment of active acromegaly is dependent on changes in GH/IGF-1 status and is not influenced by any individual change in body composition or insulin sensitivity.  相似文献   

17.
Insulin-like growth factor (IGF)-1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF-1 receptor (IGF-1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS-1 and -2 serve as intracellular IGF-1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS-2 in myelination, we analyzed myelination in IRS-2 deficient (IRS-2(-/-)) mice and age-matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS-2(-/-) brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10-IRS-2(-/-) mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up-regulation of IRS-1 expression and increased IGF-1R signaling were observed in IRS-2(-/-) mice at P10-14, indicating a compensatory mechanism to overcome IRS-2 deficiency. Adult IRS-2(-/-) mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain-specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF-1R/IRS-2 mediated signals are critical for appropriate timing of myelination in vivo.  相似文献   

18.
19.
Postnatal cardiac remodeling is characterized by a marked decrease in the insulin-like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) expression. The underlying mechanism remains unexplored. This study examined the role of microRNAs in postnatal cardiac remodeling. By expression profiling, we observed a 10-fold increase in miR-378 expression in 1-week-old neonatal mouse hearts compared with 16-day-old fetal hearts. There was also a 4-6-fold induction in expression of miR-378 in older (10 months) compared with younger (1 month) hearts. Interestingly, tissue distribution analysis identified miR-378 to be highly abundant in heart and skeletal muscles. In the heart, specific expression was observed in cardiac myocytes, which was inducible by a variety of stressors. Overexpression of miR-378 enhanced apoptosis of cardiomyocytes by direct targeting of IGF1R and reduced signaling in Akt cascade. The inhibition of miR-378 by its anti-miR protected cardiomyocytes against H(2)O(2) and hypoxia reoxygenation-induced cell death by promoting IGF1R expression and downstream Akt signaling cascade. Additionally, our data show that miR-378 expression is inhibited by IGF1 in cardiomyocytes. In tissues such as fibroblasts and fetal hearts, where IGF1 levels are high, we found either absent or significantly low miR-378 levels, suggesting an inverse relationship between these two factors. Our study identifies miR-378 as a new cardioabundant microRNA that targets IGF1R. We also demonstrate the existence of a negative feedback loop between miR-378, IGF1R, and IGF1 that is associated with postnatal cardiac remodeling and with the regulation of cardiomyocyte survival during stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号