首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Arterial pressure in most experimental and clinical hypertensions is exacerbated by salt. The effects of salt excess on right and left ventricular (RV and LV, respectively) functions and their respective coronary vasodilatory responses have been less explored. We therefore examined the effects of 8 wk of NaCl excess (8% in food) on arterial pressure, RV and LV functions (maximal rate of increase and decrease of ventricular pressure; dP/dt(max) and dP/dt(min)), coronary hemodynamics (microspheres), and collagen content (hydroxyproline assay and collagen volume fraction) in young adult normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), aged 16 wk by the end of the study. Prolonged salt excess in WKY and SHR elevated pressure only modestly, but it markedly increased LV mass, especially in SHR. Moreover, salt excess significantly impaired RV and LV diastolic function in SHR but only LV diastolic function in WKY rats. However, salt loading affected neither RV nor LV contractile function in both strains. Interstitial and perivascular collagen deposition was increased, whereas coronary vasodilatory responses to dipyridamole diminished in both ventricles in the salt-loaded SHR but not in WKY rats. Therefore, accumulation of ventricular collagen as well as altered myocardial perfusion importantly contributed to the development of salt-related RV and LV dysfunctions in this model of naturally occurring hypertension. The unique effects of salt loading on both ventricles in SHR, but not WKY rats, strongly suggest that nonhemodynamic mechanisms in hypertensive disease participate pathophysiologically with salt-loading hypertension. These findings point to the conclusion that the concept of "salt sensitivity" in hypertension is far more complex than simply its effects on arterial pressure or the LV.  相似文献   

2.
To test the hypothesis that exercise training can reverse the decrements in coronary reserve, capillary density, and mitochondrial volume density evident during established hypertension, we trained spontaneously hypertensive (SHR) and normotensive (WKY) rats on a treadmill over a 3-mo period. At 7 mo of age we used microspheres to evaluate myocardial perfusion in conscious rats. Exercise training did not alter hypertension or left ventricular hypertrophy but did increase maximal O2 consumption in both SHR and WKY. A decrement in left and right ventricular coronary reserve in SHR, compared with WKY, was indicated by 1) a smaller increment in myocardial perfusion during maximal vasodilation with dipyridamole and 2) a higher minimal coronary vascular resistance per unit mass. Exercise training had no significant effect on any index of myocardial perfusion in SHR or WKY. A 12% decrement in capillary numerical density in the endomyocardium of SHR was not reversed by exercise training. We estimated the volume densities of mitochondria, myofibrils, and sarcoplasm using electron microscopy and point-counting stereology on perfusion-fixed hearts. None of the parameters in either SHR or WKY was changed by exercise training. It is concluded that exercise training does not reverse the decrements in coronary reserve and capillary numerical density associated with hypertension in adult rats. Moreover the previously observed enhancement of mitochondrial volume density due to exercise in young hypertensive rats was not observed in adult SHR.  相似文献   

3.
We investigated the eplerenone-induced, PI3K/Akt- and GSK-3β-mediated cardioprotection against ischemia/reperfusion (I/R) injury in diabetic rats. The study groups comprising diabetic rats were treated for 14 days with 150 mg/kg/day eplerenone orally and 1 mg/kg wortmannin (PI3K/Akt antagonist) intraperitoneally with eplerenone. On the 15th day, the rats were exposed to I/R injury by 20-min occlusion of the left anterior descending coronary artery followed by 30 min of reperfusion. The hearts were processed for biochemical, molecular, and histological investigations. The I/R injury in diabetic rats inflicted a significant rise in the oxidative stress and apoptosis along with a decrease in the arterial and ventricular function and the expressions of PI3K/Akt and GSK-3β proteins. Eplerenone pretreatment reduced the arterial pressure, cardiac inotropy, and lusitropy. It significantly reduced apoptosis and cardiac injury markers. The histology revealed cardioprotection in eplerenone-treated rats. Eplerenone up-regulated the PI3K/Akt and reduced the GSK-3β expression. The group receiving wortmannin with eplerenone was deprived eplerenone-induced cardioprotection. Our results reveal the eplerenone-induced cardioprotection against I/R injury in diabetic rats and substantiate the involvement of PI3K/Akt and GSK-3β pathways in its efficacy.  相似文献   

4.
Hyperhomocysteinemia (Hhe), linked to cardiovascular disease by epidemiological studies, may be an important factor in adverse cardiac remodeling in hypertension. Specifically, convergence of myocardial and vascular alterations promoted by Hhe and hypertension may exacerbate cardiac remodeling and myocardial dysfunction. We studied male spontaneously hypertensive rats fed one of three diets: control, intermediate Hhe inducing, or severe Hhe inducing. After 10 wk of dietary intervention, cardiac function was assessed in vitro, and cardiac and coronary arteriolar remodeling were monitored by histomorphometric, immunohistochemical, and biochemical techniques. Results showed that Hhe induced diastolic dysfunction, as characterized by the diastolic pressure-volume curve, without significant changes in baseline systolic function. Perivascular collagen levels were increased by Hhe, and there was an increase in left ventricular hydroxyproline levels. Myocyte size was not affected. Coronary arteriolar wall thickness increased with Hhe due to smooth muscle hyperplasia. Mast cells increased in parallel with Hhe and collagen accumulation. In summary, 10 wk of Hhe caused coronary arteriolar remodeling, myocardial collagen deposition, and diastolic dysfunction in hypertensive rats.  相似文献   

5.
Both inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and the cardiac protective peptide adrenomedullin (AM) are increased in cardiac tissues and plasma in patients with myocardial infarction (MI) and chronic heart failure. Recently they have been increasingly recognized as important factors in the pathophysiology of MI and resultant congestive heart failure. Compared with sham-operated spontaneously hypertensive rats (SHR), we investigated myocardial immunoreactivity of TNF-alpha and AM and also their mutual relations in vivo in SHR+MI. Residual myocardial depression after MI was studied also in isolated perfused hearts. In chronic experiments, 24 and 48 h after permanent ligation of the descending anterior branch of the left coronary artery, we examined hemodynamics, plasma and myocardial peptide levels. Left ventricular function was assessed in isolated perfused hearts subjected to "global ischemia and reperfusion" and after induction of "calcium paradox". Circulating and myocardial TNF-alpha concentrations increased early after MI in SHR. Studies with global ischemia and calcium paradox in isolated heart showed early myocardial depression and calcium-dependent gradual increase of left-ventricular end-diastolic pressure. In the SHR+MI myocardial AM concentrations were increased 9- and 49-fold after respective 24 h and culminated 48 h following MI. Circulating and myocardial AM was increased in SHR+MI in association with TNFalpha-induced myocardial depression. The both studied cardiac parameters displayed the beneficial effect of the enhanced myocardial AM concentration.  相似文献   

6.
Cardiac aldosterone levels have not been evaluated in diastolic heart failure (DHF), and its roles in this type of heart failure remain unclear. This study aimed to detect cardiac aldosterone by use of a liquid chromatographic-mass spectrometric method and to assess the effects of mineralocorticoid receptor blockade on hypertensive DHF. Dahl salt-sensitive rats fed 8% NaCl diet from 7 wk (hypertensive DHF model) were divided at 13 wk into three groups: those treated with subdepressor doses of eplerenone (12.5 or 40 mg x kg(-1) x day(-1)) and an untreated group. Dahl salt-sensitive rats fed 0.3% NaCl diet served as controls. Cardiac aldosterone was detected in the DHF rats but not in the control rats, with increased ventricular levels of mineralocorticoid receptor. Cardiac levels of 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone were not different between the control and DHF rats, but the tissue level of corticosterone that has an affinity to mineralocorticoid receptor was 1,000 times as high as that of aldosterone. Aldosterone synthase activity and CYP11B2 mRNA were undetectable in the ventricular tissue of the DHF rats. Administration of eplerenone attenuated ventricular hypertrophy, ventricular fibrosis, myocardial stiffening, and relaxation abnormality, leading to the prevention of overt DHF. In summary, the myocardial aldosterone level increased in the DHF rats. However, its value was extremely low compared with corticosterone, and no evidence for enhancement of intrinsic myocardial aldosterone production was found. The upregulation of mineralocorticoid receptor may play a central role in the pathogenesis of DHF, and blockade of mineralocorticoid receptor is likely an effective therapeutic regimen of DHF.  相似文献   

7.
A recent report indicated that hyperhomocysteinemia (Hhe), in addition to its atherothrombotic effects, exacerbates the adverse cardiac remodeling seen in response to hypertension, a powerful stimulus for pathological ventricular hypertrophy. The present study was undertaken to determine whether Hhe has a direct effect on ventricular remodeling and function in the absence of other hypertrophic stimuli. Male Wistar-Kyoto rats were fed either an amino acid-defined control diet or an intermediate Hhe-inducing diet. After 10 wk of dietary treatment, rats were subjected to echocardiographic assessment of left ventricular (LV) dimensions and systolic function. Subsequently, blood was collected for plasma homocysteine measurements, and the rats were killed for histomorphometric and biochemical assessment of cardiac remodeling and for in vitro cardiac function studies. Significant LV hypertrophy was detected by echocardiographic measurements, and in vitro results showed hypertrophy with significantly increased myocyte size in the LV and right ventricle (RV). LV and RV remodeling was characterized by a disproportionate increase in perivascular and interstitial collagen, coronary arteriolar wall thickening, and myocardial mast cell infiltration. In vitro study of LV function demonstrated abnormal diastolic function secondary to decreased compliance because the rate of relaxation did not differ between groups. LV systolic function did not vary between groups in vitro. In summary, in the absence of other hypertrophic stimuli short-term intermediate Hhe caused pathological hypertrophy and remodeling of both ventricles with diastolic dysfunction of the LV. These results demonstrate that Hhe has direct adverse effects on cardiac structure and function, which may represent a novel direct link between Hhe and cardiovascular morbidity and mortality, independent of other risk factors.  相似文献   

8.

Background

Sympathetic hyperactivity may be related to left ventricular (LV) dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE) using intracardiac echocardiographic catheter.

Methods and Results

We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD). The rats (n = 32) were divided into 4 groups: 16 Wistar (W) with (n = 8) or without SAD (n = 8) and 16 spontaneously hypertensive rats (SHR) with (n = 8) or without SAD (SHRSAD) (n = 8). Blood pressure (BP) and heart rate (HR) did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV) concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV) pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD.

Conclusions

Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease.  相似文献   

9.
Previous studies have indicated that nitric oxide synthase (NOS) inhibitors can induce an increase of blood pressure and exacerbate myocardial injury induced by ischemia and reperfusion, whereas angiotensin II receptor antagonists protect the myocardium against injury induced by ischemia and reperfusion. Isolated hearts from male spontaneously hypertensive rats (SHR) or male Wistar-Kyoto rats (WKY) were subjected to 20 min global ischemia and 30 min reperfusion. Heart rate, coronary flow, left ventricular pressure, and its first derivatives (+/-dP/dt(max)) were recorded, and serum concentrations of asymmetric dimethylarginine (ADMA) and NO and the release of creatine kinase in coronary effluent were measured. The level of ADMA was significantly increased and the concentration of NO was decreased in SHR. Ischemia and reperfusion significantly inhibited the recovery of cardiac function and increased the release of creatine kinase, and ischemia and reperfusion-induced myocardial injury in SHR was aggravated compared with WKY. Vasodilation responses to acetylcholine of aortic rings were decreased in SHR. Treatment with losartan (30 mg/kg) for 14 days significantly lowered blood pressure, elevated the plasma level of NO, and decreased the plasma concentration of ADMA in SHR. Treatment with losartan significantly improved endothelium-dependent relaxation and cardiac function during ischemia and reperfusion in SHR. Exogenous ADMA also aggravated myocardial injury induced by ischemia and reperfusion in isolated perfused heart of WKY, as shown by increasing creatine kinase release and decreasing cardiac function. The present results suggest that the protective effect of losartan on myocardial injury induced by ischemia and reperfusion is related to the reduction of ADMA levels.  相似文献   

10.
Recent reports have demonstrated a potential role of tissue prorenin in the pathogenesis of cardiovascular and renal damage. This study was designed to examine the role of prorenin in the pathogenesis of target organ damage in spontaneously hypertensive rats (SHRs), the best naturally occurring experimental model of essential hypertension. To this end, we studied 20-wk-old male SHRs receiving a normal diet and 8-wk-old male SHRs given food with 8% NaCl. One-half the rats in each group were given prorenin inhibitor (PRAM-1, 0.1 mg.kg(-1).day(-1)) via osmotic minipumps; the other half served as controls. Arterial pressure, left ventricular function, cardiovascular mass indexes, cardiac fibrosis, and renal function were examined at the end of the experiment. Arterial pressure was unaffected by PRAM-1 in rats on either regular or salt-excess diets. In those rats receiving a normal diet, the blockade of prorenin activation consistently reduced left ventricular mass but affected no other variable. Salt-loaded rats given PRAM-1 for 8 wk demonstrated (1) reduced serum creatinine level, (2) decreased left ventricular mass, (3) improved left ventricular function, and (4) reduced left ventricular fibrosis. These data demonstrated that the blockade of nonproteolytic activation of prorenin exerted significant cardiovascular and renal benefit in SHRs with cardiovascular damage produced by salt excess and suggested that the activation of cardiovascular or renal prorenin may be a major mechanism that mediates cardiac and renal damage in this form of accelerated hypertension.  相似文献   

11.
There are in vitro data linking all-trans retinoic acid (atRA) with inhibition of hypertrophy and hyperplasia in cardiomyocytes, vascular smooth muscle cells, and fibroblasts. In the present study, we tested the hypothesis that chronic treatment with atRA may blunt the process of myocardial remodeling in spontaneously hypertensive rats (SHR). Four-week-old male SHR were treated with atRA (5 or 10 mg.kg-1.day-1) given daily for 3 mo by gavage; age- and sex-matched Wistar-Kyoto rats (WKY) and placebo-treated SHR served as controls. At the end of the treatment period, cardiac geometry and function were assessed by Doppler echocardiography. Histological examination and RIA were performed to evaluate medial thickening of intramyocardial and renal arteries, perivascular and interstitial collagen content, and atrial natriuretic peptide (ANP) and IGF-I in the heart, respectively. The novel finding of the present study is that atRA prevented hypertrophy of intramyocardial and intrarenal arteries and ventricular fibrosis. However, atRA treatment did not lower blood pressure or left ventricular weight and left ventricular weight-to-body weight ratio in SHR. atRA did not change cardiac geometry and function as assessed by Doppler echocardiography. atRA showed no influence on either ANP or IGF-I levels. In conclusion, the present study suggests that chronic atRA treatment prevents medial thickening of intramyocardial and intrarenal arteries and ventricular fibrosis during the development of hypertension. Left ventricular hypertrophy and cardiac geometry and function are not changed by atRA treatment.  相似文献   

12.
The importance of heart rate for left ventricular remodeling and prognosis after myocardial infarction is not known. We examined the contribution of heart rate reduction by zatebradine, a direct sinus node inhibitor without negative inotropic effects on left ventricular function and dilatation, on mortality, energy metabolism, and neurohormonal changes in rats with experimental myocardial infarction (MI). Thirty minutes after left coronary artery ligation or sham operation, the rats were randomized to receive either placebo or zatebradine (100 mg x kg(-1) x day(-1) per gavage) continued for 8 wk. Mortality during 8 wk was 33.3% in the placebo and 23.0% in the zatebradine group (P < 0.05); MI size was 36 +/- 2% and 30 +/- 1% (means +/- SE, P < 0.05), respectively. Zatebradine improved stroke volume index in all treated rats but increased left ventricular volume in rats with small MI (2.43 +/- 0.10 vs. 1.81 +/- 0.10 ml/kg, P < 0.05) but not in rats with large MI (2.34 +/- 0.09 vs. 2.35 +/- 0.11 ml/kg, not significant). Zatebradine reduced left and right ventricular norepinephrine and increased left and right ventricular 3,4-dihydroxyphenyl ethylene glycol-to-norepinephrine ratio suggesting aggravation of cardiac sympathetic activation by zatebradine after MI. Creatine kinase and lactate dehydrogenase isoenzymes in rats with MI remained unchanged by zatebradine. Lowering heart rate per se reduces mortality and MI size in this model but induces adverse effects on left ventricular remodeling in rats with small MI.  相似文献   

13.
Our recent studies have demonstrated that salt excess in the spontaneously hypertensive rat (SHR) produces a modestly increased arterial pressure while promoting marked myocardial fibrosis and structural damage associated with altered coronary hemodynamics and ventricular function. The present study was designed to determine the efficacy of an angiotensin II type 1 (AT(1)) receptor blocker (ARB) in the prevention of pressure increase and development of target organ damage from high dietary salt intake. Eight-week-old SHRs were given an 8% salt diet for 8 wk; their age- and gender-matched controls received standard chow. Some of the salt-loaded rats were treated concomitantly with ARB (candesartan; 10 mg kg(-1) day(-1)). The ARB failed to reduce the salt-induced rise in pressure, whereas it significantly attenuated left ventricular (LV) remodeling (mass and wall thicknesses), myocardial fibrosis (hydroxyproline concentration and collagen volume fraction), and the development of LV diastolic dysfunction, as shown by longer isovolumic relaxation time, decreased ratio of peak velocity of early to late diastolic waves, and slower LV relaxation (minimum first derivative of pressure over time/maximal LV pressure). Without affecting the increased pulse pressure by high salt intake, the ARB prevented the salt-induced deterioration of coronary and renal hemodynamics but not the arterial stiffening or hypertrophy (pulse wave velocity and aortic mass index). Additionally, candesartan prevented the salt-induced increase in kidney mass index and proteinuria. In conclusion, the ARB given concomitantly with dietary salt excess ameliorated salt-related structural and functional cardiac and renal abnormalities in SHRs without reducing arterial pressure. These data clearly demonstrated that angiotensin II (via AT(1) receptors), at least in part, participated importantly in the pressure-independent effects of salt excess on target organ damage of hypertension.  相似文献   

14.
The vitamin D(3) and nicotine (VDN) model is a model of isolated systolic hypertension (ISH) due to arterial calcification raising arterial stiffness and vascular impedance similar to an aged and stiffened arterial tree. We therefore analyzed the impact of this aging model on normal and diseased hearts with myocardial infarction (MI). Wistar rats were treated with VDN (n = 9), subjected to MI by coronary ligation (n = 10), or subjected to a combination of both MI and VDN treatment (VDN/MI, n = 14). A sham-treated group served as control (Ctrl, n = 10). Transthoracic echocardiography was performed every 2 wk, whereas invasive indexes were obtained at week 8 before death. Calcium, collagen, and protein contents were measured in the heart and the aorta. Systolic blood pressure, pulse pressure, thoracic aortic calcium, and end-systolic elastance as an index of myocardial contractility were highest in the aging model group compared with MI and Ctrl groups (P(VDN) < 0.05, 2-way ANOVA). Left ventricular wall stress and brain natriuretic peptide (P(VDNxMI) = not significant) were highest, while ejection fraction, stroke volume, and cardiac output were lowest in the combined group versus all other groups (P(VDNxMI) < 0.05). The combination of ISH due to this aging model and MI demonstrates significant alterations in cardiac function. This model mimics several clinical phenomena of cardiovascular aging and may thus serve to further study novel therapies.  相似文献   

15.
In cardiovascular research, methods of indwelling catheterism have been frequently described. In the present work, we used normotensive and SHR rats to compare carotid catheterism to left ventricular catheterism, this last method being proposed by some investigators for cardiac index measurement. Our results of plasma catecholamines and autonomous nervous system activity show that ventricular catheterism results in an important disturb in cardiovascular regulation and question its validity to study cardiac function.  相似文献   

16.
Hypertension is a major risk factor for developing cardiac hypertrophy and heart failure. Previous studies show that hypertrophied and failing hearts display alterations in excitation-contraction (E-C) coupling. However, it is unclear whether remodeling of the E-C coupling system occurs before or after heart disease development. We hypothesized that hypertension might cause changes in the E-C coupling system that, in turn, induce hypertrophy. Here we tested this hypothesis by utilizing the progressive development of hypertensive heart disease in the spontaneously hypertensive rat (SHR) to identify a window period when SHR had just developed hypertension but had not yet developed hypertrophy. We found the following major changes in cardiac E-C coupling during this window period. 1) Using echocardiography and hemodynamics measurements, we found a decrease of left ventricular ejection fraction and cardiac output after the onset of hypertension. 2) Studies in isolated ventricular myocytes showed that myocardial contraction was also enhanced at the same time. 3) The action potential became prolonged. 4) The E-C coupling gain was increased. 5) The systolic Ca(2+) transient was augmented. These data show that profound changes in E-C coupling already occur at the onset of hypertension and precede hypertrophy development. Prolonged action potential and increased E-C coupling gain synergistically increase the Ca(2+) transient. Functionally, augmented Ca(2+) transient causes enhancement of myocardial contraction that can partially compensate for the greater workload to maintain cardiac output. The increased Ca(2+) signaling cascade as a molecular mechanism linking hypertension to cardiac hypertrophy development is also discussed.  相似文献   

17.
We investigated the effect of long-term in vivo blockade of the ET-1 receptor subtype B (ET(B)) with A-192621, a selective ET(B) antagonist, on atrial and ventricular natriuretic peptide (NP) gene expression in deoxycorticosterone acetate (DOCA)-salt hypertension. In this model, stimulation of the cardiac natriuretic peptide (NP) and the endothelin system and suppression of the renin-angiotensin system is observed. DOCA-salt induced significant hypertension, cardiac hypertrophy and increased NP plasma and left atrial and right and left ventricular NP gene expression. ET(B) blockade per se produced hypertension and left ventricular hypertrophy but induced little change on the levels of ventricular NP and only increased left atrial natriuretic factor (ANF) mRNA levels. Combined ET(B) blockade/DOCA-salt treatment worsened hypertension, increased left ventricular hypertrophy and induced right ventricular hypertrophy. All animals so treated had increased ventricular NP gene expression. Collagen III and beta-myosin heavy chain gene expression were enhanced in both the right and the left ventricle of DOCA-salt hypertensive rats. The results of this study suggest that the ET(B) receptor does not participate directly in the modulation of atrial or ventricular NP gene expression and that this receptor mediates a protective cardiovascular function. ET(B) blockade can induce significant ventricular hypertrophy without an increase in ANF or brain NP gene expression.  相似文献   

18.
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.  相似文献   

19.
Wang JM  Wang Y  Zhu ZS  Zhang MC  Zou Y  Li JJ  Li MJ  Jiang XJ  Li XY 《Life sciences》2004,75(4):407-420
To compare diverse effects of angiotensin II type 1 receptor antagonists (irbesartan) and angiotensin converting enzyme inhibitors (imidapril) on left ventricular remodeling in spontaneously hypertensive rats (SHR). Thirty male SHR were randomly divided into three groups: SHR-IR (treated with irbesartan, 50 mg/kg), SHR-IM (imidapril, 3 mg/kg), SHR-C (placebo). Ten male Wistar Kyoto rats (WKY) treated with placebo acted as the control. All treatments were administered once daily from 14 to 27 weeks of age. Imidapril and irbesartan have the similar inhibitor effects on blood pressure and left ventricular mass indexes in SHR. Despite both drugs suppressed ERK-1 protein expression, decreased cardiomyocytes apoptosis index, blocked collagen type I deposition, reduced TGF-beta(1) gene expression in SHR, imidapril elicits a stronger inhibitory effect. Irbesartan had little effect on MKP-1 protein expression, but imidapril decreased it significantly. As a result, the ERK-1/MKP-1 ratio in SHR-IR was significantly greater than that in SHR-IM (P < 0.05). These results suggest that the balance between MKP-1 and ERKs in myocardial tissue is important for cardiac cell proliferation and growth. They also indicate that the similar efficacy of antihypertensive treatment in reducing blood pressure does not predict the similar capacity to control the individual facet of left ventricular remodeling. Irbesartan is more effective in regressing the homeostasis between ERK-1 and MKP-1, however imidapril is superior in suppressing apoptosis and collagen synthesis in cardiac tissue.  相似文献   

20.
The present study determined cardiac chamber-specific alterations of the expression of the atrial and brain natriuretic peptide (ANP and BNP) genes with a small increase in age beyond adulthood and with systemic hypertension of intermediate duration. The expression distributions of these genes was determined using in situ hybridization in the right and left atria (RA and LA), and the right and left ventricles (RV and LV) in Wistar Kyoto rats (WKY) and age-matched Spontaneously Hypertensive rats (SHR) at ages 6 months (adult) and 8 months (advanced-age beyond adulthood).In all rat groups, both genes were expressed (ANP > BNP) in the LA and LV, and were not expressed in the RA and RV. The genes were expressed in the LA in all rat groups; the ANP, but not the BNP, expression increased with advancing age and with superimposed hypertension. They were expressed in the LV of the advanced-age WKY, adult and advanced-age SHR, but not in the adult WKY. The ANP mRNA labeling in the LA was diffuse and interspersed with dense accumulations, whereas BNP labeling was diffuse. The labeling of both genes in the form of sparse clusters was seen in the LV of the advanced-age SHR. Our study showed that ANP and BNP expression in left heart chambers increased with a small increase in age, with hypertension of intermediate duration, and with modest left ventricular hypertrophy. The chamber-specific expression distribution could be due to special groups of cardiac cells, or to local chamber-specific factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号