首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for the quantitative determination of peptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Known limitations imposed by crystal heterogeneity, peptide ionization differences, data handling, and protein quantification with MALDI-TOF mass spectrometry are addressed in this method with a "seed crystal" protocol for analyte-matrix formation, the use of internal protein standards, and a software package called maldi_quant. The seed crystal protocol, a new variation of the fast-evaporation method, minimizes crystal heterogeneity and allows for consistent collection of protein spectra. The software maldi_quant permits rapid and automated analysis of peak intensity data, normalization of peak intensities to internal standards, and peak intensity deconvolution and estimation for vicinal peaks. Using insulin proteins in a background of other unrelated peptides, this method shows an overall coefficient of variance of 4.4%, and a quantitative working range of 0.58-37.5 ng bovine insulin per spot. Coupling of this methodology to powerful analytical procedures such as immunoprecipitation is likely to lead to the rapid and reliable quantification of biologically relevant proteins and their closely related variants.  相似文献   

2.
Although recent advances in gel electrophoresis and mass spectrometry have greatly facilitated separation, purification, and identification of proteins, significant challenges remain in relation to phosphoprotein analysis. Here we introduce a powerful method for analysis of protein phosphorylation in which phosphorylation sites are labeled with guanidinoethanethiol (GET) by beta-elimination/Michael addition prior to proteolysis and mass spectrometry (MS) analysis. This technique is especially useful in conjunction with gel-based technology in that all of the processes involved, including GET labeling, washing, and phosphospecific enzymatic hydrolysis, can be carried out in excised gel slices, thereby minimizing sample loss and contamination. The novel GET tag, which has a highly basic guanidine group, increases the peak intensities for the GET-labeled tryptic peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In addition, phosphospecific proteolytic cleavage occurs at guanidinoethylcysteine (Gec) residue, which is arginine-mimic formed by GET tagging of phosphorylated serine residues. Thus, GET tagging is especially useful in analysis of long tryptic phosphopeptides. To illustrate the utility of the in-gel GET tagging and digestion approach, we used it to precisely analyze the phosphorylation sites of human glutathione S-transferase P1 (GSTP1), an enzyme involved in phase II metabolism of many carcinogens and anticancer drugs. The in-gel GET tagging/digestion technique significantly enhances the analytical potential of gel electrophoresis/MS in studies of proteome phosphorylation.  相似文献   

3.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) serves as a rapid and accurate means to determine masses of proteins independent of their shapes or interactions with other molecules. It provides one of the most fundamental characterizations of major plasma proteins. Purified proteins in saline or serum specimens were prepared for analysis by dilution, mixing with a solution of sinapinic acid, and drying on a target plate. Specimens were analyzed in a linear TOF mode with external calibration. Analyses of 24 purified plasma proteins showed predominance of singly charged ions with lesser amounts of dimer and doubly charged monomer, and provided measured masses for these proteins. A number of proteins, including albumin, transferrin, apolipoproteins A-I, A-II, C-I, C-II, and C-III, and prealbumin, could be analyzed directly in serum with appropriate dilution. Measured values for masses of major plasma proteins will assist in analysis of serum and plasma. It is possible to analyze a number of components by MALDI-TOF/MS directly in diluted serum. Extremely simple sample preparation techniques may be useful in analyzing structural variation of several major plasma proteins, particularly those with masses <30 kDa, including a number of apolipoproteins and markers of nutritional status or acute phase responses.  相似文献   

4.
5.
Protein phosphorylation underlies numerous cellular signaling processes. Since a reliable prediction of phosphorylation site(s) based on a consensus amino acid sequence is rather difficult to date, determination of phosphorylation site(s) in phosphoproteins is a crucial step toward the understanding of their function at the molecular level. A conventional protocol for the determination of phosphorylation sites utilizes radioactive labeling of a phosphoprotein by (32)P and purification of digested peptides carrying radioactivity, followed by Edman degradation. This method is not only tedious, but also indirect because the evidence will be based on disappearance of a phenylthiohydantoin signal from the degradation cycle where the (32)P radioactivity is eluted. Several methodologies have been developed to determine the phosphorylation sites directly by using mass spectrometry. These include collision-induced dissociation (CID) and post-source decay (PSD), both of which tend to produce fragment ions less efficiently as the number of residues exceeds 20. Moreover, in both decay processes, there is a tendency for the phosphate group to be removed during the breakdown of the main peptide chain. We report a method that allows direct observation of phosphorylated peptide fragments of phosphopeptides exceeding 20 residues by using an in-source decay fragmentation by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, yielding results which are difficult or impossible to obtain by existing methods using CID or PSD.  相似文献   

6.
A novel method for isolation and de novo sequencing of N-terminal peptides from proteins is described. The method presented here combines selective chemical tagging using succinimidyloxycarbonylmethyl tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP-Ac-OSu) at the Nα-amino group of peptides after digestion by metalloendopeptidase (from Grifola frondosa) and selective capture procedures using p-phenylenediisothiocyanate resin, by which the N-terminal peptide can be isolated, whether or not it is N-terminally blocked. The isolated N-terminal peptide modified N-terminally with TMPP-Ac-OSu reagent produces a simple fragmentation pattern under tandem mass spectrometric analysis to significantly facilitate sequencing.  相似文献   

7.
The aim of this study was to discriminate 30 Vibrio strains isolated from two wastewater treatment plants from Agadir, Morocco by two molecular typing methods, pulsed-field gel electrophoresis (PFGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Out of the 30 strains of Vibrio examined in this study, 5 isolates could not be typed by PFGE and consistently appeared as a smear on the gel. In general, high genetic biodiversity among the Vibrio strains was found regardless to the isolation source. The results of MALDI TOF analysis show a high congruence of strain grouping demonstrating the accuracy and reliability of MALDI-TOF MS.  相似文献   

8.
A robust high-throughput single-nucleotide polymorphism (SNP) genotyping method is reported, which applies allele-specific extension to achieve allelic discrimination and uses matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to measure the natural molecular weight difference of oligonucleotides for determination of the base in a single-nucleotide polymorphic location. Tenfold PCR is performed successfully by carefully designing the primers and adjusting the conditions of PCR. In addition, two ways used for PCR product purification are compared and the matrix used in mass spectrometry for high-throughput oligonucleotide analysis is evaluated. The result here shows that the method is very effective and suitable for high-throughput genotyping of SNPs.  相似文献   

9.
Artificial environmental conditions in tissue culture, such as elevated relative humidity and rich nutrient medium, can influence and modify tissue growth and induce spontaneous changes from characteristic organization pattern to unorganized callus. As succulent plants with crassulacean acid metabolism, cacti are particularly susceptible to this altered growth environment. Glycosylated proteins of Mammillaria gracillis tissues cultivated in vitro, separated by SDS-PAGE, were detected with Con A after the transfer of proteins onto the nitrocellulose membrane. The glycan components were further characterized by affinity blotting with different lectins (GNA, DSA, PNA, and RCA(120)). The results revealed significant differences in glycoprotein pattern among the investigated cactus tissues (shoot, callus, hyperhydric regenerant, and tumor). To test whether the N-glycosylation of the same protein can vary in different developmental stages of cactus tissue, the N-glycans were analyzed by MALDI-TOF MS after in-gel deglycosylation of the excised 38-kDa protein band. Paucimannosidic-type N-glycans were detected in oligosaccharide mixtures from shoot and callus, while the hyperhydric regenerant and tumor shared glycans of complex type. The hybrid oligosaccharide structures were found only in tumor tissue. These results indicate that the adaptation of plant cells to artificial environment in tissue culture is reflected in N-glycosylation, and structures of N-linked glycans vary with different developmental stages of Mammillaria gracillis tissues.  相似文献   

10.
Molecular analysis of hemoglobin variants is crucial in the diagnosis of hemoglobinopathies. Routinely used techniques for identifying variants include alkaline gel electrophoresis and automated HPLC. Sometimes comigration of variants in electrophoresis or coelution in HPLC provides ambiguous results. Due to high sequence homology between normal and variant hemoglobin, proteomic analysis using LC/ESI-MS data is also challenging. Here we describe a novel method wherein alkaline gel electrophoresis and MALDI-MS were used in combination to characterize variant samples such as Hb FSD and Hb D-Iran unambiguously. The method is rapid, efficient, and cost effective. In the future, it can be applied as a diagnostic tool.  相似文献   

11.
Ricin, the toxin component of Ricinus communis is considered as a potential chemical weapon. Several complementary techniques are required to confirm its presence in environmental samples. Here, we report a method combining immunocapture and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the accurate detection of different species of R. communis. Liquid environmental samples were applied to magnetic particles coated with a monoclonal antibody directed against the B-chain of the toxin. After acidic elution, tryptic peptides of the A- and B-chains were obtained by accelerated digestion with trypsin in the presence of acetonitrile. Of the 20 peptides observed by MALDI-TOF MS, three were chosen for detection ( m/ z 1013.6, m/ z 1310.6 and m/ z 1728.9, which correspond to peptides 161-LEQLAGNLR-169, 150-YTFAFGGNYDR-160, and 233-SAPDPSVITLENSWGR-248, respectively). Their selection was based on several parameters such as detection sensitivity, specificity toward ricin forms and absence of isotopic overlap with unrelated peptides. To increase assay reproducibility, stable isotope-labeled peptides were incorporated during the sample preparation phase. The final assay has a limit of detection estimated at approximately 50 ng/mL ( approximately 0.8 nM) of ricin in buffer. No interference was observed when the assay was applied to ricin-spiked milk samples. In addition, several varieties of R. communis or from different geographical origins were also shown to be detectable. The present assay provides a new tool with a total analytical time of approximately 5 h, which is particularly relevant in the context of a bioterrorist incident.  相似文献   

12.

Background

MALDI-TOF mass spectrometry is currently used in microbiological diagnosis to characterize bacterial populations. Our aim was to determine whether this technique could be applied to intact eukaryotic cells, and in particular, to cells involved in the immune response.

Methodology/Principal Findings

A comparison of frozen monocytes, T lymphocytes and polymorphonuclear leukocytes revealed specific peak profiles. We also found that twenty cell types had specific profiles, permitting the establishment of a cell database. The circulating immune cells, namely monocytes, T lymphocytes and polymorphonuclear cells, were distinct from tissue immune cells such as monocyte-derived macrophages and dendritic cells. In addition, MALDI-TOF mass spectrometry was valuable to easily identify the signatures of monocytes and T lymphocytes in peripheral mononuclear cells.

Conclusions/Significance

This method was rapid and easy to perform, and unlike flow cytometry, it did not require any additional components such as specific antibodies. The MALDI-TOF mass spectrometry approach could be extended to analyze the cell composition of tissues and the activation state of immune cells.  相似文献   

13.
14.
Proline-containing peptides of the X-proline type are cleaved by the dipeptidase prolidase. The classical method of prolidase assay relied on the colorimetric estimation of the liberated proline with ninhydrin using acidic media and heat. This method, however, gave inconsistent results due to the nonspecificity of the ninhydrin color reaction. We report here a method for the detection of the liberated proline using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Human sera were incubated with a mixture containing the dipeptide glycyl-proline in Tris-HCl supplemented with manganese at 37 degrees C for 24h. The samples were precipitated with trifluoroacetic acid and centrifuged. An aliquot of the supernatant was mixed with an equal volume of ferulic acid solution. An aliquot from this mixture was spotted on a stainless steel mass spectrometry grid and analyzed using MALDI-TOF mass spectrometry. The activity of the enzyme was determined by the complete disappearance of the glycyl-proline peak with the concomitant appearance of the proline peak and can be expressed in terms of the ratio of the area beneath the proline to the area beneath the glycyl-proline peak. Subjects homozygous for prolidase deficiency had a ratio ranging from 0.006 to 0.04 while obligatory heterozygotes had a ratio ranging from around 1.1 to 2.4. Normal subjects had ratios ranging from 9 to 239. Using this method we have unambiguously identified subjects with homozygous or heterozygous prolidase deficiency. In addition to the advantage of rapid sample preparation time, this method is highly specific, reproducible, and sensitive.  相似文献   

15.
Qiu C  Kumar S  Guo J  Yu L  Guo W  Shi S  Russo JJ  Ju J 《Analytical biochemistry》2012,427(2):193-201
Knowledge of the anti-drug antibody (ADA) status is necessary in early research studies. Because specific assay materials are sparse and time is pressing, a generic assay format with drug tolerance for detection of ADAs in serum samples from mice exposed to immunoglobulin G (IgG) or antigen-binding fragments (Fabs) is highly desirable. This article describes a generic immune complex assay in the sandwich enzyme-linked immunosorbent assay (ELISA) format based on (i) transformation of free ADAs to immune complexes by preincubation with excess drug, (ii) the use of a murine anti-human Fab constant domain Fab as capture reagent, (iii) detection of the immune complexes by a peroxidase-labeled rabbit anti-murine Fc antibody, and (iv) ADA-positive control conjugates consisting of human Fab and murine IgG. Results of the experiments suggest that the generic immune complex assay for mouse serum samples was at least equivalent to specific ADA immune assays and even superior regarding drug tolerance. The generic immune complex assay confers versatility as it detects ADAs in complex with full-length IgG as well as with Fabs independent of the target specificity in mouse serum samples. These features help to save the sparse amounts of specific antibodies available in early research and development and speed up drug candidate selection.  相似文献   

16.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) mass spectrometry was employed to analyze DNA methylation carried out by the Escherichia coli dam DNA methyltransferase using oligonucleotide substrates with molecular masses of 5000-10,000 Da per strand. The mass spectrometry assay offers several advantages: (i) it directly shows the methylation as the increase in the mass of the substrate DNA, (ii) it is nonradioactive, (iii) it is quantitative, and (iv) it can be automated for high-throughput applications. Since unmethylated and methylated DNA are detected, the ratio of methylation can be determined directly and accurately. Furthermore, the assay allows detection individually of the methylation of several substrates in competition, offering an ideal setup to analyze the specificity of DNA interacting with enzymes. We could not identify methylation at any noncanonical site, indicating that the dam MTase is a very specific enzyme. Finally, MALDI-TOF mass spectrometry permitted assessment of the number of methyl groups incorporated into each DNA strand, thereby, allowing study of mechanistic details such as the processivity of the methylation reaction. We provide evidence that the dam MTase modifies DNA in a processive reaction, confirming earlier findings.  相似文献   

17.

Background

MALDI-TOF MS recently emerged as a valuable identification tool for bacteria and yeasts and revolutionized the daily clinical laboratory routine. But it has not been established for routine mould identification. This study aimed to validate a standardized procedure for MALDI-TOF MS-based mould identification in clinical laboratory.

Materials and Methods

First, pre-extraction and extraction procedures were optimized. With this standardized procedure, a 143 mould strains reference spectra library was built. Then, the mould isolates cultured from sequential clinical samples were prospectively subjected to this MALDI-TOF MS based-identification assay. MALDI-TOF MS-based identification was considered correct if it was concordant with the phenotypic identification; otherwise, the gold standard was DNA sequence comparison-based identification.

Results

The optimized procedure comprised a culture on sabouraud-gentamicin-chloramphenicol agar followed by a chemical extraction of the fungal colonies with formic acid and acetonitril. The identification was done using a reference database built with references from at least four culture replicates. For five months, 197 clinical isolates were analyzed; 20 were excluded because they were not identified at the species level. MALDI-TOF MS-based approach correctly identified 87% (154/177) of the isolates analyzed in a routine clinical laboratory activity. It failed in 12% (21/177), whose species were not represented in the reference library. MALDI-TOF MS-based identification was correct in 154 out of the remaining 156 isolates. One Beauveria bassiana was not identified and one Rhizopus oryzae was misidentified as Mucor circinelloides.

Conclusions

This work''s seminal finding is that a standardized procedure can also be used for MALDI-TOF MS-based identification of a wide array of clinically relevant mould species. It thus makes it possible to identify moulds in the routine clinical laboratory setting and opens new avenues for the development of an integrated MALDI-TOF MS-based solution for the identification of any clinically relevant microorganism.  相似文献   

18.
The low-molecular-weight (LMW), low-abundance protein composition of lupin and pea phloem exudates was determined using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)> Phloem sap was collected from lupin inflorescence stalks and pods (using shallow incisions) or pea seedlings (by placing cut stems in an EDTA solution). Western blot analysis of phloem exudate proteins with either a polyclonal antibody raised against Ricinus communis sieve-tube exudate proteins or pea Rubisco antibody revealed that the collected exudates contained phloem sap, and that contamination with other plant fluids was negligible. Three matrix combinations were tested to assess their ability to facilitate protein ionization. Sinapinic acid in combination with trifluoroacetic acid yielded the cleanest mass spectra, and revealed an array of LMW proteins ranging from 2 to 10 kDa. For pea phloem exudate, the addition of protease inhibitors to the exudate collection solution prevented proteolysis of endogenous proteins; the inhibitors did not interfere with the detection of proteins. The sensitivity of this technique was sufficient to detect changes in LMW phloem peptides throughout plant development in lupin, or to detect differences in the phloem peptide composition of two genotypes of pea. Because only limited sample preparation is required, MALDI-TOF-MS is a useful technique for characterizing complex fluids such as phloem sap.  相似文献   

19.
Park SJ  Yoon WG  Song JS  Jung HS  Kim CJ  Oh SY  Yoon BH  Jung G  Kim HJ  Nirasawa T 《Proteomics》2006,6(1):349-363
Proteome analysis by 2-DE and PMF by MALDI-TOF MS was performed on human amnion and amniotic fluid at term. Ninety-two soluble and nineteen membrane proteins were identified from amnion. Thirty-five proteins were identified from amniotic fluid. Calgranulin A and B were found in all patients infected with Ureaplasma urealyticum, but not in any of the patients without infection, indicating that they are potential markers of intrauterine infection. Identity of calgranulin A and B was confirmed by MALDI-TOF/TOF MS. This study represents the first extensive analysis of the human amnion and amniotic fluid proteome at term and demonstrates that 2-DE and MALDI-TOF MS is a useful tool for identifying clinically significant biomarkers of problematic pregnancies.  相似文献   

20.
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号