首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allergic asthma is a debilitating disease of the airways characterized by airway hyperresponsiveness, eosinophilic inflammation, goblet cell metaplasia with associated mucus hypersecretion,?and airway wall remodelling events, particularly subepithelial fibrosis and smooth muscle cell hyperplasia. Animal models that accurately mimic these hallmarks of allergic airways disease are critical for studying mechanisms associated with the cellular and structural changes that lead to disease pathogenesis. Aspergillus fumigatus, is a common aeroallergen of human asthmatics. The intratracheal (IT) delivery of A. fumigatus conidia into the airways of sensitized mice has been described as a model of allergic disease. Here, we compared the IT model with a newly developed inhalation (IH) challenge model. The IH model allowed multiple fungal exposures, which resulted in an exacerbation to the allergic asthma phenotype. Increased recruitment of eosinophils and lymphocytes, the hallmark leukocytes of asthma, was noted with the IH model as compared to the IT model in which macrophages and neutrophils were more prominent. Immunoglobulin E (IgE) production was significantly greater after IH challenge, while that of IgG(2a) was higher after IT challenge. Airway wall remodelling was pronounced in IH-treated mice, particularly after multiple allergen challenges. Although the IT model may be appropriate for the examination of the played by innate cells in the acute response to fungus, it fails to consistently reproduce the chronic remodelling hallmarks of allergic asthma. The ability of the IH challenge to mimic these characteristics recommends it as a model suited to study these important events.  相似文献   

2.
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperresponsiveness in allergic airways. Allergic inflammation induced in mice by sensitization and challenge with the house dust mite allergen Der P1 was associated with elevated levels of ET-1 within the lung, increased numbers of eosinophils within bronchoalveolar lavage fluid and tissue sections, and development of airway hyperresponsiveness to methacholine (P < 0.05, n = 6 mice per group). Treatment of allergic mice with an endothelin receptor antagonist, SB-217242 (30 mg x kg(-1) x day(-1)), during allergen challenge markedly inhibited airway eosinophilia (bronchoalveolar lavage fluid and tissue) and development of airway hyperresponsiveness. These findings provide direct evidence for a mediator role for ET-1 in development of airway hyperresponsiveness and airway eosinophilia in Der P1-sensitized mice after antigen challenge.  相似文献   

3.
The airway inflammation in asthma is dominated by eosinophils. The aim of this study was to elucidate the contribution of newly produced eosinophils in airway allergic inflammation and to determine mechanisms of any enhanced eosinophilopoiesis. OVA-sensitized BALB/c mice were repeatedly exposed to allergen via airway route. Newly produced cells were identified using a thymidine analog, 5-bromo-2'-deoxyuridine, which is incorporated into DNA during mitosis. Identification of IL-5-producing cells in the bone marrow was performed using FACS. Bone marrow CD3+ cells were enriched to evaluate IL-5-protein release in vitro. Anti-IL-5-treatment (TRFK-5) was given either systemically or directly to the airways. IL-5R-bearing cells were localized by immunocytochemistry. Repeated airway allergen exposure caused prominent airway eosinophilia after three to five exposures, and increased the number of immature eosinophils in the bone marrow. Up to 78% of bronchoalveolar lavage (BAL) granulocytes were 5-bromo-2'-deoxyuridine positive. After three allergen exposures, both CD3+ and non-CD3 cells acquired from the bone marrow expressed and released IL-5-protein. Anti-IL-5 given i.p. inhibited both bone marrow and airway eosinophilia. Intranasal administration of anti-IL-5 also reduced BAL eosinophilia, partly via local effects in the airways. Bone marrow cells, but not BAL eosinophils, displayed stainable amounts of the IL-5R alpha-chain. We conclude that the bone marrow is activated by airway allergen exposure, and that newly produced eosinophils contribute to a substantial degree to the airway eosinophilia induced by allergen. Airway allergen exposure increases the number of cells expressing IL-5-protein in the bone marrow. The bone marrow, as well as the lung, are possible targets for anti-IL-5-treatment.  相似文献   

4.
Chronic airway inflammation is a key feature of bronchial asthma. Leukotrienes are potent inflammatory mediators that play a role in the pathophysiology of asthma, and their levels are elevated in the airways in response to allergen challenge. We examined the anti-inflammatory effect of thymoquinone (TQ), the active principle in the volatile oil of Nigella sativa seeds, on leukotriene (LT) biosynthesis in a mouse model of allergic asthma. Mice sensitized and challenged with ovalbumin (OVA) antigen had an increased amounts of leukotriene B4 and C4, Th2 cytokines, and eosinophils in bronchoalveolar lavage (BAL) fluid. In addition, there was also a marked increase in lung tissue eosinophilia and goblet cell numbers. Administration of TQ before OVA challenge inhibited 5-lipoxygenase, the main enzyme in leukotriene biosynthesis, expression by lung cells and significantly reduced the levels of LTB4 and LTC4. This was accompanied by a marked decrease in Th2 cytokines and BAL fluid and lung tissue eosinophilia, all of which are characteristics of airway inflammation. These results demonstrate the anti-inflammatory effect of TQ in experimental asthma.  相似文献   

5.
Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases.  相似文献   

6.
The mammalian target of rapamycin (mTOR) plays an important role in cell growth/differentiation, integrating environmental cues, and regulating immune responses. Our lab previously demonstrated that inhibition of mTOR with rapamycin prevented house dust mite (HDM)-induced allergic asthma in mice. Here, we utilized two treatment protocols to investigate whether rapamycin, compared to the steroid, dexamethasone, could inhibit allergic responses during the later stages of the disease process, namely allergen re-exposure and/or during progression of chronic allergic disease. In protocol 1, BALB/c mice were sensitized to HDM (three i.p. injections) and administered two intranasal HDM exposures. After 6 weeks of rest/recovery, mice were re-exposed to HDM while being treated with rapamycin or dexamethasone. In protocol 2, mice were exposed to HDM for 3 or 6 weeks and treated with rapamycin or dexamethasone during weeks 4–6. Characteristic features of allergic asthma, including IgE, goblet cells, airway hyperreactivity (AHR), inflammatory cells, cytokines/chemokines, and T cell responses were assessed. In protocol 1, both rapamycin and dexamethasone suppressed goblet cells and total CD4+ T cells including activated, effector, and regulatory T cells in the lung tissue, with no effect on AHR or total inflammatory cell numbers in the bronchoalveolar lavage fluid. Rapamycin also suppressed IgE, although IL-4 and eotaxin 1 levels were augmented. In protocol 2, both drugs suppressed total CD4+ T cells, including activated, effector, and regulatory T cells and IgE levels. IL-4, eotaxin, and inflammatory cell numbers were increased after rapamycin and no effect on AHR was observed. Dexamethasone suppressed inflammatory cell numbers, especially eosinophils, but had limited effects on AHR. We conclude that while mTOR signaling is critical during the early phases of allergic asthma, its role is much more limited once disease is established.  相似文献   

7.
Besides IgE, the Ab isotype that gives rise to sensitization and allergic asthma, the immune response to common inhalant allergens also includes IgG. Increased serum titers of allergen-specific IgG, induced spontaneously or by allergen vaccination, have been implicated in protection against asthma. To verify the interference of topical IgG with the allergen-triggered eosinophilic airway inflammation that underlies asthma, sensitized mice were treated by intranasal instillation of specific IgG, followed by allergen challenge. This treatment strongly reduced eosinophilic inflammation and goblet cell metaplasia, and increased Th1 reactivity and IFN-gamma levels in bronchoalveolar lavage fluid. In contrast, inflammatory responses were unaffected in IFN-gamma-deficient mice or when applying F(ab')(2). Although dependent on specific allergen-IgG interaction, inflammation triggered by bystander allergens was similarly repressed. Perseverance of inflammation repression, apparent after secondary allergen challenge, and increased allergen capture by alveolar macrophages further characterized the consequences of topical IgG application. These results assign a novel protective function to anti-allergen IgG namely at the local level interference with the inflammatory cascade, resulting in repression of allergic inflammation through an FcgammaR- and IFN-gamma-dependent mechanism. Furthermore, these results provide a basis for topical immunotherapy of asthma by direct delivery of anti-allergen IgG to the airways.  相似文献   

8.
BACKGROUND: Prostaglandin E2 is a potent immunomodulator that inhibits the early and late bronchoconstriction to inhaled allergen, as well as inhibiting the acute allergen-induced release of mediators into the human airway. To determine if the stable prostaglandin E agonist misoprostol could alter the late allergic formation of mediators we measured the appearance of eosinophils and key cytokines in the bronchoalveolar lavage fluid 24 h after allergen instillation. METHODS: Six atopic asthmatics underwent bronchoscopy, alveolar lavage and antigen instillation followed 24 h later by bronchoalveolar lavage. Eosinophil counts were done, together with measurements of IL-4, IL-5, eotaxin, RANTES and cysteinyl leukotrienes by immunoassay. The study was done in randomized blinded fashion while the volunteers took placebo or 600 microg of misoprostol four times a day (QID). RESULTS: Misoprostol significantly decreased the appearance of IL-5 late after allergen challenge. Eotaxin levels were reduced, but not statistically significantly. Eosinophil number, RANTES, eosinophil cationic protein and cysteinyl leukotrienes were not altered by misoprostol. CONCLUSIONS: Misoprostol reduces the formation of IL-5 late after allergen challenge, perhaps by inhibiting eosinophil, mast cell, and/or T lymphocyte production of IL-5. Despite decreases in IL-5 and eotaxin, eosinophils were recruited and activated by allergen.  相似文献   

9.
Ozone is a commonly encountered environmental oxidant which has been linked to asthma exacerbation in epidemiological studies. Ozone induces airway inflammation and enhances response to inhaled allergen. It has been suggested that antioxidant therapy may minimize the adverse effects of ozone in asthma. We have previously shown that the antioxidant gamma-tocopherol (gammaT), an isoform of vitamin E, also has anti-inflammatory effects. We employed a Brown Norway rat model of ozone-enhanced allergic responses to test the therapeutic effects of gammaT on O(3)-induced airway inflammation. Ovalbumin (OVA)-sensitized rats were intranasally challenged with 0 or 0.5% OVA on Days 1 and 2, and exposed to 0 or 1 ppm ozone (8 h/day) on Days 4 and 5. Rats were also given 0 or 100 mg/kg gammaT on Days 2 through 5. Pulmonary tissue and bronchoalveolar lavage fluid (BALF) were collected on Day 6. OVA challenge caused increased total cells (267% increase) and eosinophils (4000%) in BALF that was unaffected by ozone exposure. Morphometric evaluation of lung tissue revealed increases in intraepithelial mucosubstances (IM) (300%) and subepithelial eosinophils (400%) in main axial airways. Ozone exposure of allergic rats enhanced IM increases in proximal axial airways (200%), induced cys-leukotrienes, MCP-1, and IL-6 production in BALF, and upregulated expression of IL-5 and IL-13 mRNA. gammaT treatment had no effect on IM increases by allergen, but blocked enhancement by ozone. gammaT attenuated both OVA- or ozone-stimulated eosinophilic infiltration, and increases of BALF cys-leukotrienes, MCP-1, and IL-6, as well as IL-5 and IL-13 mRNA. These data demonstrate broad anti-inflammatory effects of a gammaT and suggest that it may be an effective therapy of allergic airway inflammation.  相似文献   

10.
Inflammatory responses induced by allergen exposure cause mucous cell metaplasia (MCM) by differentiation of existing and proliferating epithelial cells into mucus-storing cells. Airway epithelia have various mechanisms that resolve these changes to form normal airway epithelia. In this report, we first investigated the state of mucous cell metaplasia and the mechanisms by which MCM is reduced despite continued exposures to allergen. After 5 days of allergen exposure, extensive MCM had developed but was reduced when allergen challenge was continued for 15 days. During this exposure period, IL-13 levels decreased and IFN-gamma levels increased in the bronchoalveolar lavage fluid. In contrast, IL-13 levels decreased but IFN-gamma was not detected at any time point during the resolution of MCM following cessation of allergen exposure. Instillation of IFN-gamma but not anti-Fas caused accelerated resolution of MCM and MCM was not resolved in Stat1-deficient mice exposed to allergen for 15 days, confirming that IFN-gamma is crucial for reducing MCM during prolonged exposures to allergen. IFN-gamma but not anti-Fas induced apoptotic cell death in proliferating normal human bronchial epithelial cells and in human bronchial epithelial cells from subjects with asthma. The apoptotic effect of IFN-gamma was caspase dependent and was inhibited by IL-13, indicating that the Th2 milieu in asthmatics may maintain MCM by preventing cell death in metaplastic mucous cells. These studies could be useful in the understanding of deficiencies leading to chronicity in airway changes and designing novel therapies to reverse MCM and airway obstruction in asthmatics.  相似文献   

11.
Nitric oxide (NO) levels are increased in the exhaled air of asthmatics. As NO levels correlate with allergic airway inflammation, NO measurement has been suggested for disease monitoring. In patients with asthma, we previously demonstrated that intrabronchial treatment with a natural porcine surfactant enhanced airway inflammation after segmental allergen provocation. We studied whether local levels of NO reflect the degree of allergic airway inflammation following segmental allergen challenge with or without surfactant pretreatment. Segmental NO, as well as nitrite and nitrate in bronchoalveolar lavage (BAL) fluid, was measured before and after segmental challenge with either saline, saline plus allergen, or surfactant plus allergen in 16 patients with asthma and five healthy subjects. The data were compared with inflammatory BAL cells. Segmental NO levels were increased after instillation of saline (p < 0.05), or surfactant plus allergen in asthmatics (p < 0.05), and values were higher after surfactant plus allergen compared to saline challenge. Nitrate BAL levels were not altered after saline challenge but increased after allergen challenge (p < 0.05) and further raised by surfactant (p < 0.05), whereas nitrite levels were not altered by any treatment. Segmental NO and nitrate levels correlated with the degree of eosinophilic airway inflammation, and nitrate levels also correlated with neutrophil and lymphocyte numbers in BAL. In healthy subjects, NO, nitrite, and nitrate were unaffected. Thus, segmental NO and nitrate levels reflect the degree of allergic airway inflammation in patients with asthma. Measurement of both markers can be useful in studies using segmental allergen provocation, to assess local effects of potential immunomodulators.  相似文献   

12.
To investigate the possibility that an increase in bronchovascular permeability is associated with allergen exposure in sensitive asthmatics we evaluated the amounts of serum proteins in bronchoalveolar lavage (BAL) effluents before and after local challenge with allergen. After exposure of sensitive asthmatic airways (n = 15) to allergen significant increases in total protein compared with controls were observed: 0.08 +/- 0.01 mg/ml in control airways and 0.13 +/- 0.02 mg/ml in challenged airways; P less than 0.05. The greatest changes induced by allergen exposure involved small-molecular-weight proteins (less than 345,000) and an inverse correlation was observed between log molecular weight and percent increase in the concentrations of the specific proteins; r = -0.61. BAL-serum distribution coefficients of serum proteins in airway fluids reflected a greater diffusability of low-molecular-weight proteins immediately after allergen exposure. We also evaluated the movement of serum proteins into lung after local allergen exposure using intravenously administered 99mTc-albumin (n = 10) and found an immediate 3.8-fold increase in amounts of radioactive albumin in allergen exposed airways compared with airways exposed to diluent. Most of the radioactivity was recovered in the first 5 ml of aliquot withdrawn, suggesting a marked increase in the permeability of the bronchial (large airway) vascular-epithelial membrane. An increase in serum proteins was also observed in BAL fluid of asthmatics 2-4 h after aerosol challenge (n = 4), including all proteins in the molecular weight range 45,000-900,000. These studies suggest that allergen exposure in sensitive asthmatics causes an acute increase in bronchovascular permeability to serum proteins.  相似文献   

13.
AimsFudosteine is a cysteine derivative that is used as an expectorant in chronic bronchial inflammatory disorders. It has been shown to decrease the number of goblet cells in an animal model. This study examined the effects of fudosteine on airway inflammation and remodeling in a murine model of chronic asthma.Main methodsBALB/c mice were sensitized by an intraperitoneal injection of ovalbumin (OVA), and subsequently challenged with nebulized ovalbumin three days a week for four weeks. Seventy-two hours after the fourth challenge, airway hyperresponsiveness (AHR) and the cell composition of bronchoalveolar lavage (BAL) fluid were assessed. Fudosteine was administered orally at 10 mg/kg or 100 mg/kg body weight from the first to the fourth challenge.Key findingsWe investigated the effects of fudosteine on the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenges. The administration of fudosteine during the challenge with ovalbumin prevented the development of airway hyperresponsiveness and accumulation of lymphocytes in the airways. Eotaxin, IL-4, and TGF-β levels and the relative intensity of matrix metalloproteinase-2 and matrix metalloproteinase-9 (MMP-2 and MMP-9) in BAL fluid were reduced by the fudosteine treatment; however, the number of eosinophils in BAL fluid and serum IgE levels did not change. The expression of TGF-β, the development of goblet cell hyperplasia, subepithelial collagenization, and basement membrane thickening were also reduced by the fudosteine treatment.SignificanceThese results indicate that fudosteine is effective in reducing airway hyperresponsiveness, airway inflammation, and airway remodeling in a murine model of chronic asthma.  相似文献   

14.
Activation of the protein tyrosine kinase Syk is an early event that follows cross-linking of Fc gamma R and Fc epsilon R, leading to the release of biologically active molecules in inflammation. We reported previously that aerosolized Syk antisense oligodeoxynucleotides (ASO) depresses Syk expression in inflammatory cells, the release of mediators from alveolar macrophages, and pulmonary inflammation. To study the effect of Syk ASO in allergic inflammation and airway hyperresponsiveness, we used the Brown Norway rat model of OVA-induced allergic asthma. Syk ASO, delivered in a liposome, carrier/lipid complex by aerosol to rats, significantly inhibited the Ag-induced inflammatory cell infiltrate in the bronchoalveolar space, decreasing both neutrophilia and eosinophilia. The number of eosinophils in the lung parenchyma was also diminished. Syk ASO also depressed up-regulation of the expression of beta(2) integrins, alpha(4) integrin, and ICAM-1 in bronchoalveolar lavage leukocytes and reversed the Ag-induced decrease in CD62L expression on neutrophils. Furthermore, the increase in TNF levels in bronchoalveolar lavage following Ag challenge was significantly inhibited. Syk ASO also suppressed Ag-mediated contraction of the trachea in a complementary model. Thus, aerosolized Syk ASO suppresses many of the central components of allergic asthma and inflammation and may provide a new therapeutic approach.  相似文献   

15.
Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C(4); and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.  相似文献   

16.

Background

Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation.

Methods

Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures.

Results

In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice.

Conclusion

We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics.  相似文献   

17.
Astragaloside IV, a new cycloartane-type triterpene glycoside extract of Astragalus membranaceus Bunge, has been identified for its potent immunoregulatory, antiinflammatory, and antifibrotic actions. Here we investigated whether astragaloside IV could suppress the progression of airway inflammation, airway hyperresponsiveness, and airway remodeling in a murine model of chronic asthma. BALB/c mice sensitized to ovalbumin (OVA) were chronically challenged with aerosolized OVA for 8 weeks. Astragaloside IV was orally administered at a dose of 50 mg x kg-1 x day-1 during each OVA challenge. Astragaloside IV treatment resulted in significant reduction of eosinophilic airway inflammation, airway hyperresponsiveness, interleukin (IL)-4 and IL-13 levels in bronchoalveolar lavage fluid, and total immunoglobulin E levels in serum. Furthermore, astragaloside IV treatment markedly inhibited airway remodeling, including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. In addition, the expression of transforming growth factor-beta1 in the lung was also reduced by astragaloside IV. These data indicate that astragaloside IV may mitigate the development of characteristic features in chronic experimental asthma.  相似文献   

18.
Allergic bronchopulmonary aspergillosis is often difficult to treat and results in morbidity associated with chronic airway changes. This study assessed the requirement for B cells and their products in the allergic pulmonary phenotype in a murine model of fungal allergic asthma that mimics allergic bronchopulmonary aspergillosis. C57BL/6 and μMT mice (assumed to lack peripheral B cells) were sensitized with Aspergillus fumigatus extract and challenged with two inhalation exposures of live conidia to induce airway disease. Airway hyperresponsiveness after methacholine challenge, peribronchovascular inflammation, goblet cell metaplasia, and fibrotic remodeling of the airways was similar between μMT mice and their wild-type counterparts (C57BL/6). Surprisingly, even in the absence of the μ-chain, these μMT mice produced IgE and IgG Abs, although the Abs induced did not have specificity for A. fumigatus Ags. In contrast, IgA was not detected in either the lavage fluid or serum of μMT mice that had been exposed to A. fumigatus. Our findings also reveal the existence of CD19(+)CD9(+)IgD(+) B-1 cells in the lungs of the μMT animals. These data show the μMT mice to have a developmental pathway independent of the canonical μ-chain route that allows for their survival upon antigenic challenge with A. fumigatus conidia, although this pathway does not seem to allow for the normal development of Ag-specific repertoires. Additionally, this study shows that IgA is not required for either clearance or containment of A. fumigatus in the murine lung, as fungal outgrowth was not observed in the μMT animals after multiple inhalation exposures to live conidia.  相似文献   

19.
Epidemiological studies have identified childhood exposure to environmental tobacco smoke as a significant risk factor for the onset and exacerbation of asthma, but studies of smoking in adults are less conclusive, and mainstream cigarette smoke (MCS) has been reported to both enhance and attenuate allergic airway inflammation in animal models. We sensitized mice to ovalbumin (OVA) and exposed them to MCS in a well-characterized exposure system. Exposure to MCS (600 mg/m(3) total suspended particulates, TSP) for 1 h/day suppresses the allergic airway response, with reductions in eosinophilia, tissue inflammation, goblet cell metaplasia, IL-4 and IL-5 in bronchoalveolar lavage (BAL) fluid, and OVA-specific antibodies. Suppression is associated with a loss of antigen-specific proliferation and cytokine production by T cells. However, exposure to a lower dose of MCS (77 mg/m(3) TSP) had no effect on the number of BAL eosinophils or OVA-specific antibodies. This is the first report to demonstrate, using identical smoking methodologies, that MCS inhibits immune responses in a dose-dependent manner and may explain the observation that, although smoking provokes a systemic inflammatory response, it also inhibits T cell-mediated responses involved in a number of diseases.  相似文献   

20.
Allergen sensitization and allergic airway disease are likely to come about through the inhalation of Ag with immunostimulatory molecules. However, environmental pollutants, including nitrogen dioxide (NO2), may promote adaptive immune responses to innocuous Ags that are not by themselves immunostimulatory. We tested in C57BL/6 mice whether exposure to NO2, followed by inhalation of the innocuous protein Ag, OVA, would result in allergen sensitization and the subsequent development of allergic airway disease. Following challenge with aerosolized OVA alone, mice previously exposed via inhalation to NO2 and OVA developed eosinophilic inflammation and mucus cell metaplasia in the lungs, as well as OVA-specific IgE and IgG1, and Th2-type cytokine responses. One hour of exposure to 10 parts per million NO2 increased bronchoalveolar lavage fluid levels of total protein, lactate dehydrogenase activity, and heat shock protein 70; promoted the activation of NF-kappaB by airway epithelial cells; and stimulated the subsequent allergic response to Ag challenge. Furthermore, features of allergic airway disease were not induced in allergen-challenged TLR2-/- and MyD88-/- mice exposed to NO2 and aerosolized OVA during sensitization. These findings offer a mechanism whereby allergen sensitization and asthma may result under conditions of high ambient or endogenous NO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号