首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target.  相似文献   

2.
The skin forms an efficient barrier against the environment, and rapid cutaneous wound healing after injury is therefore essential. Healing of the uppermost layer of the skin, the epidermis, involves collective migration of keratinocytes, which requires coordinated polarization of the cells. To study this process, we developed a model that allows analysis of live-cell images of migrating keratinocytes in culture based on a small number of parameters, including the radius of the cells, their mass and their polarization. This computational approach allowed the analysis of cell migration at the front of the wound and a reliable identification and quantification of the impaired polarization and migration of keratinocytes from mice lacking fibroblast growth factors 1 and 2 – an established model of impaired healing. Therefore, our modeling approach is suitable for large-scale analysis of migration phenotypes of cells with specific genetic defects or upon treatment with different pharmacological agents.  相似文献   

3.
Diabetic patients are at high risk of developing delayed cutaneous wound healing. Adiponectin plays a pivotal role in the pathogenesis of diabetes and is considered to be involved in various pathological conditions associated with diabetes; however, its role in wound repair is unknown. In this study, we elucidated the involvement of adiponectin in cutaneous wound healing in vitro and in vivo. Normal human keratinocytes expressed adiponectin receptors, and adiponectin enhanced proliferation and migration of keratinocytes in vitro. This proliferative and migratory effect of adiponectin was mediated via AdipoR1/AdipoR2 and the ERK signaling pathway. Consistent with in vitro results, wound closure was significantly delayed in adiponectin-deficient mice compared with wild-type mice, and more importantly, keratinocyte proliferation and migration during wound repair were also impaired in adiponectin-deficient mice. Furthermore, both systemic and topical administration of adiponectin ameliorated impaired wound healing in adiponectin-deficient and diabetic db/db mice, respectively. Collectively, these results indicate that adiponectin is a potent mediator in the regulation of cutaneous wound healing. We propose that upregulation of systemic and/or local adiponectin levels is a potential and very promising therapeutic approach for dealing with diabetic wounds.  相似文献   

4.
Integrins are ubiquitous transmembrane receptors that play crucial roles in cell-cell and cell-matrix interactions. In this study, we have determined the effects of the loss of beta 1 integrins in keratinocytes in vitro and during cutaneous wound repair. Flow cytometry of cultured beta 1-deficient keratinocytes confirmed the absence of beta 1 integrins and showed downregulation of alpha 6 beta 4 but not of alpha v integrins. beta 1-null keratinocytes were characterised by poor adhesion to various substrates, by a reduced proliferation rate and by a strongly impaired migratory capacity. In vivo, the loss of beta 1 integrins in keratinocytes caused a severe defect in wound healing. beta 1-null keratinocytes showed impaired migration and were more densely packed in the hyperproliferative epithelium. Surprisingly, their proliferation rate was not reduced in early wounds and even increased in late wounds. The failure in re-epithelialisation resulted in a prolonged inflammatory response, leading to dramatic alterations in the expression of important wound-regulated genes. Ultimately, beta 1-deficient epidermis did cover the wound bed, but the epithelial architecture was abnormal. These findings demonstrate a crucial role of beta 1 integrins in keratinocyte migration and wound re-epithelialisation. Movies available on-line  相似文献   

5.
6.
Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti‐oxidative and anti‐inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO‐2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO‐1 and HO‐2 to corneal wound healing in an in vitro epithelial scratch injury model. A scratch wound model was established using human corneal epithelial (HCE) cells. These cells expressed both HO‐1 and HO‐2 proteins. Injury elicited a rapid and transient increase in HO‐1 and HO activity; HO‐2 expression was unchanged. Treatment with biliverdin or CORM‐A1, a CO donor, accelerated wound closure by 10% at 24 h. Inhibition of HO activity impaired wound closure by more than 50%. However, addition of biliverdin or CORM‐A1 reversed the effect of HO inhibition on wound healing. Moreover, knockdown of HO‐2 expression, but not HO‐1, significantly impaired wound healing. These results indicate that HO activity is required for corneal epithelial cell migration. Inhibition of HO activity impairs wound healing while amplification of its activity restores and accelerates healing. Importantly, HO‐2, which is highly expressed in the corneal epithelium, appears to be critical for the wound healing process in the cornea. The mechanisms by which it contributes to cell migration in response to injury may reside in the cytoprotective properties of CO and biliverdin. J. Cell. Physiol. 226: 1732–1740, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
Integrins have been shown to play important roles in embryonic development, wound healing, metastasis, and other biological processes. alphavbeta5 is a receptor for RGD-containing extracellular matrix proteins that has been suggested to be important in cutaneous wound healing and adenovirus infection. To examine the in vivo function of this receptor, we have generated mice lacking beta5 expression, using homologous recombination in embryonic stem cells. Mice homozygous for a null mutation of the beta5 subunit gene develop, grow, and reproduce normally. Keratinocytes harvested from beta5(-/-) mice demonstrate impaired migration on and adhesion to the alphavbeta5 ligand, vitronectin. However, the rate of healing of cutaneous wounds is not different in beta5(-/-) and beta5(+/+) mice. Furthermore, keratinocytes and airway epithelial cells obtained from null mice show adenovirus infection efficiency equal to that from wild-type mice. These data suggest that alphavbeta5 is not essential for normal development, reproduction, adenovirus infection, or the healing of cutaneous wounds.  相似文献   

9.
Immunosuppression induced by the administration of glucocorticoids will prevent normal wound contraction and normal increases in tensile strength. Vitamin A, anabolic steroids, and growth hormone will, in the presence of glucocorticoids, restore mesenchymal cell proliferation, the accumulation of collagen, and the rate of increase of wound tensile strength. They will not, however, antagonize the inhibition of wound contraction. A novel inorganic agent, the tetrachlorodecaoxygen anion complex (TCDO), known to enhance the migration and activation of macrophages, was tested in a rat model of impaired wound healing using high doses of glucocorticoids. Histology, changes in wound contraction, collagen synthesis, and tensile strength were evaluated. Animals receiving cortisone in combination with TCDO displayed markedly enhanced wound healing, including restoration of tensile strength, collagen synthesis, and wound contraction. The results indicate that TCDO could be a potential agent of wound healing in immunosuppressed patients and anergic wounds.  相似文献   

10.
11.
Baek SH  Cho HW  Kwon YC  Lee JH  Kim MJ  Lee H  Choe KM 《FEBS letters》2012,586(6):772-777
Rho-family small GTPases regulate epithelial cell sheet migration by organizing actin and myosin during wound healing. Here, we report that Pak3, but not Pak1, is a downstream target protein for Rac1 in wound closure of the Drosophila larval epidermis. Pak3-deficient larvae failed to close a wound hole and this defect was not rescued by Pak1 expression, indicating differential functions of the two proteins. Pak3 localized to the wound margin, which selectively required Rac1. Pak3-deficient larvae showed severe defects in actin-myosin organization at the wound margin and in submarginal cells, which was reminiscent of the phenotypes of Rac1-deficient larvae. These results suggest that Pak3 specifically mediates Rac1 signaling in organizing actin and myosin during Drosophila epidermal wound healing.  相似文献   

12.
Secreted protein acidic and rich in cysteine (SPARC) and thrombospondin-2 (TSP-2) are structurally unrelated matricellular proteins that have important roles in cell-extracellular matrix (ECM) interactions and tissue repair. SPARC-null mice exhibit accelerated wound closure, and TSP-2-null mice show an overall enhancement in wound healing. To assess potential compensation of one protein for the other, we examined cutaneous wound healing and fibrovascular invasion of subcutaneous sponges in SPARC-TSP-2 (ST) double-null and wild-type (WT) mice. Epidermal closure of cutaneous wounds was found to occur significantly faster in ST-double-null mice, compared with WT animals: histological analysis of dermal wound repair revealed significantly more mature phases of healing at 1, 4, 7, 10, and 14 days after wounding, and electron microscopy showed disrupted ECM at 14 days in these mice. ST-double-null dermal fibroblasts displayed accelerated migration, relative to WT fibroblasts, in a wounding assay in vitro, as well as enhanced contraction of native collagen gels. Zymography indicated that fibroblasts from ST-double-null mice also produced higher levels of matrix metalloproteinase (MMP)-2. These data are consistent with the increased fibrovascular invasion of subcutaneous sponge implants seen in the double-null mice. The generally accelerated wound healing of ST-double-null mice reflects that described for the single-null animals. Importantly, the absence of both proteins results in elevated MMP-2 levels. SPARC and TSP-2 therefore perform similar functions in the regulation of cutaneous wound healing, but fine-tuning with respect to ECM production and remodeling could account for the enhanced response seen in ST-double-null mice.  相似文献   

13.
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.  相似文献   

14.
Cutaneous wounds, a type of soft tissue injury, are difficult to heal in aging. Differentiation, migration, proliferation, and apoptosis of skin cells are identified as key factors during wound healing processes. Mesenchymal stem cells have been documented as possible candidates for wound healing treatment because their use could augment the regenerative capacity of many tissues. However, the effects of exosomes derived from adipose-derived stem cell (ADSC-exos) on cutaneous wound healing remain to be carefully elucidated. In this present study, HaCaT cells were exposed to hydrogen peroxide (H2O 2) for the establishment of the skin lesion model. Cell Counting Kit-8 assay, migration assay, and flow cytometry assay were conducted to detect the biological function of ADSC-exos in skin lesion model. Finally, the possible mechanism was further investigated using Western blot assay. The successful construction of the skin lesion model was confirmed by results of the enhanced cell apoptosis of HaCaT cells induced by H 2O 2, the increased Bax expression and decreased Bcl-2 expression. CD9 and CD63 expression evidenced the existence of ADSC-exos. The results of functional experiments demonstrated that ADSC-exos could prompt cell proliferation and migration of HaCaT cells, and repress cell apoptosis of HaCaT cells. In addition, the activation of Wnt/β-catenin signaling was confirmed by the enhanced expression of β-catenin at the protein level. Collectively, our findings suggest that ADSC-exos play a positive role in cutaneous wound healing possibly via Wnt/β-catenin signaling. Our study may provide new insights into the therapeutic target for cutaneous wound healing.  相似文献   

15.
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue that play a pivotal role in cutaneous wound healing by synthesizing fibronectin (a component of the extracellular matrix), secreting angiogenesis factors, and generating strong contractile forces. In wound healing, low concentrations of reactive oxygen species (ROS) are essential in combating invading microorganisms and in cell-survival signaling. However, excessive ROS production impairs fibroblasts. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates the mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. In the present study, the downregulation of IDH2 expression resulted in an increase in cell apoptosis in mouse skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also delayed cutaneous wound healing in mice and impaired dermal fibroblast function. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO alleviated the apoptosis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in cutaneous wound healing in association with mitochondrial ROS.  相似文献   

16.

Background

COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2ep−/− mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2−/−) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing.

Methodology/Principal Findings

Full thickness excisional wound healing experiments were performed on Ctip2L2/L2 and Ctip2ep−/− animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2ep−/− mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair.

Conclusions/Significance

Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure.  相似文献   

17.
Cutaneous wound healing is delayed by protein malnutrition (PM). On the other hand, estrogen promotes cutaneous wound healing by its anti-inflammatory and cell proliferation effects. Therefore, we hypothesized that estrogen administration in protein-malnourished ovariectomized (OVX) female mice might improve the inflammatory response and promote cutaneous wound healing as well as normal nutrition. To test this hypothesis, we used full-thickness excisional wounds in Control SHAM, PM SHAM, PM OVX and PM OVX+17β-estradiol mice. The Control diet included 200 g/kg protein and the PM diet included 30 g/kg protein. The ratio of wound area in the Control SHAM group was significantly smaller than those in the three PM groups. In addition, microscopic findings also showed that the ratio of collagen fibers, the ratio of myofibroblasts and the number of new blood vessels in the Control SHAM group were significantly greater than those in the three PM groups. However, the number of Ym1-positive cells as an anti-inflammatory M2-like macrophage marker in the PM OVX+17β-estradiol group was significantly higher than those in the other three groups. These results indicate that the appearance of anti-inflammatory M2-like macrophages was promoted by estrogen administration; however, it could not promote cutaneous wound healing upon a low-protein diet. Therefore, it may be confirmed that nutrition is more important for promoting cutaneous wound healing than estrogen administration.  相似文献   

18.
Scratch-wound assays are frequently used to study directed cell migration, a process critical for embryogenesis, invasion, and tissue repair. The function and identity of trimeric G-proteins in cell behavior during wound healing is not known. Here we show that Galpha12/13, but not Galphaq/11 or Galphai, is indispensable for coordinated and directed cell migration. In mouse embryonic fibroblasts endogenous Rho activity is present at the rear of migrating cells but also at the leading edge, whereas it is undetectable at the cell front of Galpha12/13-deficient mouse embryonic fibroblasts. Spatial activation of Rho at the wound edge can be stimulated by lysophosphatidic acid. Active Rho colocalizes with the diaphanous-related formin Dia1 at the cell front. Galpha12/13-deficient cells lack Dia1 localization to the wound edge and are unable to form orientated, stable microtubules during wound healing. Knock down of Dia1 reveals its requirement for microtubule stabilization as well as polarized cell migration. Thus, we identified Galpha12/13-proteins as essential components linking extracellular signals to localized Rho-Dia1 function during directed cell movement.  相似文献   

19.
We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing.  相似文献   

20.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号