首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of glutamine and glucose was studied in thymocytes from normal rats and BB rats with the spontaneous autoimmune diabetic syndrome to assess their potential roles as fuels. The major measured products from glucose were lactate and, to a lesser extent, CO2, and pyruvate. Glutamine had no effect on the rates of their production from glucose. Glutamine was metabolized to ammonia, aspartate, glutamate, and CO2, with aspartate being the major product of carbons from glutamine in the absence of glucose. Glucose markedly decreased the formation of ammonia, aspartate, and CO2 from glutamine, but increased that of glutamate, with an overall decrease in glutamine utilization by 55%. More glutamate than aspartate was produced from glutamine in the presence of glucose. The potential production of ATP from glucose was similar to that when glutamine was present alone. However, glucose markedly decreased production of ATP from glutamine, but not vice versa. This resulted in ATP production from glucose being 2.5 times that from glutamine when both substrates were present. The oxidation of glucose to CO2 via the Krebs cycle accounts for 75-80% of glucose-derived ATP production. Cellular ATP levels markedly decreased in the absence of exogenous substrates, but were constant throughout a 2-h incubation in the presence of glutamine, glucose, or both. There were no differences in thymocyte glucose or glutamine metabolism between normal and diabetic BB rats, in contrast to previous findings in peripheral lymphoid organs. Our results suggest that glucose is a more important fuel than glutamine for "resting" thymocytes, again in contrast to the cells of peripheral lymphoid organs in which glutamine is as important as glucose as a fuel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear.In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary – and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies.All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation.It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.  相似文献   

4.
5.
Stimulation of insulin secretion in the pancreatic beta-cell by a fuel such as glucose requires the metabolism of the fuel and is accompanied by increases in oxygen consumption and intracellular free Ca2+. A very early signal for these events could be a decrease in the cytosolic ATP/ADP ratio due to fuel phosphorylation. To test this hypothesis the regulation of free Ca2+ was evaluated in permeabilized RINm5F insulinoma cells that sequester Ca2+ and maintain a low medium free Ca2+ concentration (set point), between 100 and 200 nM, in the presence of Mg2+ and ATP. ATP, creatine, creatine phosphate, and creatine phosphokinase were added to the media to achieve various constant ratios of ATP/ADP. Free Ca2 was monitored using fura-2. The results demonstrated that the steady-state free Ca2+ concentration varied inversely with the ATP/ADP ratio and orthophosphate (Pi) levels. In contrast, no correlation between free Ca2+ and the phosphorylation potential (ATP/ADP.Pi) was found. Regulation of the Ca2+ set point by the ATP/ADP ratio was observed at ratios between 5 and 50 and at Pi concentrations between 1 and 7 mM, irrespective of whether mitochondria were participating in Ca2+ sequestration or were inhibited. Increasing the ATP/ADP ratio stimulated Ca2+ uptake by the nonmitochondrial pool but did not modify Ca2+ efflux. Glucose 6-phosphate (1 mM) had no effect on the Ca2+ set point. The data suggest that variations in the cytosolic ATP/ADP ratio induced by fuel stimuli may regulate Ca2+ cycling across nonmitochondrial compartments and the plasma membrane by modulating the activity of Ca2+ -ATPases. A mechanism linking fuel metabolism and cytosolic ATP/ADP ratio to activation of the Ca2+ messenger system in pancreatic beta-cells is proposed.  相似文献   

6.
The effect of glutamine biosynthesis and degradation on glucose catabolism in Saccharomyces cerevisiae was studied. A wild-type strain and mutants altered in glutamine biosynthesis and degradation were analyzed. Cells having low levels of glutamine synthetase activity showed high ATP/ADP ratios and a diminished rate of glucose metabolism. It is proposed that glutamine biosynthesis plays a role in the regulation of glucose catabolism.  相似文献   

7.
The effects of media concentrations of glucose andglutamine on the intracellular nucleotide pools andoxygen uptake rates of a murine antibody-secretinghybridoma cell line were investigated. Cells takenfrom mid-exponential phase of growth were incubated inmedium containing varying concentrations of glucose(0–25 mM) and glutamine (0–9 mM). The intracellularconcentrations of ATP, GTP, UTP and CTP, and theadenylate energy charge increased concomitantly withthe medium glucose concentration. The total adenylatenucleotide concentration did not change over a glucose concentration range of 1–25 mM but therelative levels of AMP, ADP and ATP changed as theenergy charge increased from 0.36 to 0.96. Themaximum oxygen uptake rate (OUR) was obtained in thepresence of 0.1–1 mM glucose. However at glucoseconcentrations >1 mM the OUR decreased suggestinga lower level of aerobic metabolism as a result of theCrabtree effect.A low concentration of glutamine (0.5 mM) caused asignificant increase (45–128%) in the ATP, GTP,CTP, UTP, UDP-GNac, and NAD pools and a doubling ofthe OUR compared to glutamine-free cultures. Theminimal concentration of glutamine also caused anincrease in the total adenylate pool indicating thatthe amino acid may stimulate thede novosynthesis of nucleotides. However, all nucleotidepools and the OUR remained unchanged within the rangeof 0.5–9 mM glutamine.Glucose was shown to be the major substrate forenergy metabolism. It was estimated that in thepresence of high concentrations of glucose (10–25 mM),glutamine provided the energy for the maintenance ofup to 28% of the intracellular ATP pool, whereas theremainder was provided by glucose metabolism.(Author for correspondence; E-mail:  相似文献   

8.
The energetic metabolism of rat C6 glioma cells has been investigated as a function of the proliferative and differentiation states under three-dimensional (3-D) growing conditions on microcarrier beads. First, the transient deprivation of glutamine from the culture medium induced a marked decrease in the growth rate and a differentiation of C6 cells through the oligodendrocytic phenotype. Second, the respiratory capacity of the C6 cells during short-term subcultures with or without glutamine continuously declined as a function of the cell density, in part due to the mitochondrial content decrease. During the transition from the early exponential to the plateau growth phase in glutamine-containing medium, the oxygen consumption rate per single cell decreased concomitantly with a decrease in the glucose consumption and lactate production rates. This phenomenon led to a sixfold decrease in the total ATP production flux, without significantly affecting the cellular ATP/ADP ratio, thus indicating that some ATP-consuming processes were simultaneously suppressed during C6 proliferation. In glutamine-free medium, the cellular ATP/ADP ratio transiently increased due to growth arrest and to a reduced ATP turnover. Moreover, the results indicated that glutamine is not an essential respiratory substrate for rat C6 glioma under short-term glutamine deprivation. Worth noting was the high contribution of the mitochondrial oxidative phosphorylation toward the total ATP synthesis (about 80%), regardless of the proliferation or the differentiation status of the C6 cells.  相似文献   

9.
In the presence of 3 mM atractyloside, growth of in vitro cultured Ehrlich ascites tumor cells is inhibited by 70% within 24 h. Viability of the cells is not severely affected (dye exclusion test). Incorporation of 2-[14C]-thymidine and U-[14C]-leucine into acid insoluble precipitate were reduced by 80% or 20% respectively as compared to controls. Flow cytometric analysis of cell cycle progression revealed a retardation rather than an arrest of cell growth by atractyloside. Morphological changes of the cells primarily concern mitochondria which are spherical shaped with translucent matrix rid of cristae. After transfer of atractyloside treated cells to normal medium, proliferation and macromolecular synthesis normalized within 3 to 6 h. At 3 mM of atractyloside, glucose consumption of the cells increased by 25%, lactate production by 30%. Lactate/glucose ratio was 1.9 after 24 h. Oxygen uptake was reduced by 35% after 12 h. The [ATP]/[ADP] ratio of the whole cells runs through a maximum between 12 and 18 h. The ratio never falls below 5.0. The ATP/ADP concentration ratio in the mitochondrial and extramitochondrial compartment were increased as compared to controls. delta G of ATP hydrolysis of the intact cells was in a normal range (-50 kJ), energy charge was 0.86 (controls 0.88). Transport of amino acids, uptake of glucose and activity of Na+, K+-ATPase of the plasma membrane were not impaired by 3 mM atractyloside.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Glucose metabolism stimulates insulin secretion in pancreatic beta-cells. A consequence of metabolism is an increase in the ratio of ATP to ADP ([ATP]/[ADP]) that contributes to depolarization of the plasma membrane via inhibition of ATP-sensitive K+ (K(ATP)) channels. The subsequent activation of calcium channels and increased intracellular calcium leads to insulin exocytosis. Here we evaluate new data and review the literature on nucleotide pool regulation to determine the utility and predictive value of a new mathematical model of ion and metabolic flux regulation in beta-cells. The model relates glucose consumption, nucleotide pool concentration, respiration, Ca2+ flux, and K(ATP) channel activity. The results support the hypothesis that beta-cells maintain a relatively high [ATP]/[ADP] value even in low glucose and that dramatically decreased free ADP with only modestly increased ATP follows from glucose metabolism. We suggest that the mechanism in beta-cells that leads to this result can simply involve keeping the total adenine nucleotide concentration unchanged during a glucose elevation if a high [ATP]/[ADP] ratio exits even at low glucose levels. Furthermore, modeling shows that independent glucose-induced oscillations of intracellular calcium can lead to slow oscillations in nucleotide concentrations, further predicting an influence of calcium flux on other metabolic oscillations. The results demonstrate the utility of comprehensive mathematical modeling in understanding the ramifications of potential defects in beta-cell function in diabetes.  相似文献   

11.
Cell cycle kinetics and energy metabolism of Ehrlich ascites tumor cells grown in glucose-deprived medium supplemented with uridine, were investigated in order to extend our knowledge about the significance of the metabolic conversion of glucose for cell cycle progression of these cells. Viability (dye exclusion test) of uridine supplemented cells was not affected, although growth was reduced to 50 to 60% of the controls. Uridine did not significantly impair growth of controls in standard medium up to 20 mM. Studies on cell cycle progression using flow cytometry (BrdU-H33258 technique) revealed an accumulation of cells in G2M phase, which can be explained by a delay in the passage of G2M-compartment of about 12 +/- 2 h. After a 24 h culture period, 60% of the cell populations were found in G2M (30% in control cultures). This fraction increased to about 70% in the following passage. Protein and DNA synthesis corresponded to the proliferation rate. Oxygen uptake was increased by about 50%, glutamine consumption by 30%, lactate production was reduced to below 10% of the controls. The ATP/ADP concentration ratio was found in a physiological range of 4 to 6. It was calculated that cells grown in standard medium produced 60% of ATP via oxidative pathways and 40% via glycolysis; however, in glucose-free, uridine-supplemented medium the values are more than 90% and less than 10%. No significant differences in total ATP production were observed. Growth of the cells in glucose-deprived medium could not be sustained by cytidine. All our data substantiate the present concept that glycolytic ATP-production is not essential for maintenance of viability and growth of these cells.  相似文献   

12.
Energy metabolism in cultured human fibroblasts during aging in vitro   总被引:1,自引:0,他引:1  
To explore the relationship between energy metabolism and the limited replicative life span of cultured human fibroblasts, we studied several bioenergetic parameters in normal fibroblasts at early passage (young cells) and at late passage (old cells) and early passage cells from a subject with the Hutchinson-Gilford (progeria) syndrome. Old cells consumed more glucose and produced more lactate during growth, but O2 consumption, both basal and following maximum uncoupling of oxidative phosphorylation by SF-6847, was the same as in young cells. Progeria cells produced the most lactate but did not consume more glucose, while their basal and uncoupled O2 consumption was similar to that of young and old cells during both log and confluent states. Consumption of glutamine, a source of both oxidative energy and lactate, was approximately the same in all three cell types as was 14CO2 production from 2- 14C-pyruvate and 5- 14C-glutamate. ATP and ADP concentrations were similar in all cell types with a rise in the ATP/ADP ratio during growth from log to confluent state. Thus, old and progeria cells, in contrast to young cells, produce more lactate during growth consistent with a rise in energy demand and/or inefficiency of oxidative phosphorylation. Although limitations in total energy output do not appear to be causal to the loss of replicative capacity in normal cells after serial passage, they could play a role in the curtailed replicative capacity of progeria cells.  相似文献   

13.
The synthesis and release of alanine and glutamine were investigated with an intact rat epitrochlaris muscle preparation. This preparation will maintain on incubation for up to 6 hours, tissue levels of phosphocreatine, ATP, ADP, lactate, and pyruvate closely approximating those values observed in gastrocnemius muscles freeze-clamped in vivo. The epitrochlaris preparation releases amino acids in the same relative proportions and amounts as a perfused rat hindquarter preparation and human skeletal muscle. Since amino acids were released during incubation without observable changes in tissue amino acids levels, rates of alanine and glutamine release closely approximate net amino acid synthesis. Large increases in either glucose uptake or glycolysis in muscle were not accompanied by changes in either alanine or glutamine synthesis. Insulin increased muscle glucose uptake 4-fold, but was without effect on alanine and glutamine release. Inhibition of glycolysis by iodacetate did not decrease the rate of alanine synthesis. The rates of alanine and glutamine synthesis and release from muscle decreased significantly during prolonged incubation despite a constant rate of glucose uptake and pyruvate production. Alanine synthesis and release were decreased by aminooxyacetic acid, an inhibitor of alanine aminotransferase. This inhibition was accompanied by a compensatory increase in the release of other amino acids, such as aspartate, an amino acid which was not otherwise released in appreciable quantities by muscle. The release of alanine, pyruvate, glutamate, and glutamine were observed to be interrelated events, reflecting a probable near-equilibrium state of alanine aminotransferase in skeletal muscle. It is concluded that glucose metabolism and amino acid release are functionally independent processes in skeletal muscle. Alanine release reflects the de novo synthesis of the amino acid and does not arise from the selective proteolysis of an alanine-rich storage protein. It appears that the rate of alanine and glutamine synthesis in skeletal muscle is dependent upon the transformation and metabolism of amino acid precursors.  相似文献   

14.
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2–4 h. Nucleotide release from hepatic cells is stimulated by the Ca2+ ionophore, ionomycin, and by the P2 receptor agonist, 2′3′-O-(4-benzoyl-benzoyl)-adenosine 5′-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10–100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca2+ levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9419-2) contains supplementary material, which is available to authorized users.  相似文献   

15.
Glucose and glutamine metabolism in rat thymocytes.   总被引:4,自引:3,他引:1  
The metabolism of glucose and glutamine in freshly prepared resting and concanavalin A-stimulated rat thymocytes was studied. Concanavalin A addition enhanced uptake of both glucose and glutamine and led to an increase in oxidative degradation of both substrates to CO2. With variously labelled [14C]glucose, it was shown that the pathways of glucose dissimilation were equally stimulated by the mitogen. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused an increase in the oxidation of pyruvate as judged by the enhanced release of 14CO2 from [2-14C]-, [3,4-14C]- and [6-14C]-glucose. Addition of glutamine did not affect glucose metabolism. The major end products of glutamine metabolism by resting and mitogen-stimulated rat thymocytes were glutamate, aspartate, CO2 and NH3. Virtually no lactate was formed from glutamine. Concanavalin A enhanced the formation of all end products except glutamate, indicating that more glutamine was metabolized beyond the stage of glutamate in the mitogen-activated cells. Addition of glucose caused a significant decrease in the rates of glutamine utilization and conversion into aspartate and CO2 in the absence and in the presence of concanavalin A. In the presence of glucose, almost all nitrogen of the metabolized glutamine was accounted for as NH3 released via the glutaminase and/or glutamate dehydrogenase reactions. In the absence of glucose, part (18%) of the glutamine nitrogen was metabolized by the resting and to a larger extent (38%) by the mitogen-stimulated thymocytes via a transaminase or amidotransferase reaction.  相似文献   

16.
A peculiar phenomenon, differing from the response of mammalian cells, occurred when Chinook salmon embryo (CHSE) cells were passaged in the medium lacking of both glucose and glutamine. To elucidate metabolic mechanism of CHSE cells, the metabolism parameters, key metabolic enzymes, and ATP levels were measured at different glucose and glutamine concentrations. In the glutamine-free culture, hexokinase activity kept constant, and lactate dehydrogenase (LDH) activity decreased. This indicated that lack of glutamine did not expedite glucose consumption but made it shift to lower lactate production and more efficient energy metabolism. The results coincided with the experimental results of unaltered specific glucose consumption rate and decreased yield coefficients of lactate to glucose. In the glucose-free culture, simultaneous increase of glutaminase activity and of specific ammonia production rate suggested an increased flux into the glutaminolysis pathway, and increases of both glutamate dehydrogenase activity and yield coefficient of ammonia to glutamine showed an increased flux into deamination pathway. However, when glucose and glutamine were both lacking, the specific consumption rates of most of amino acids increased markedly, together with decrease of LDH activity, indicating that pyruvate derived from amino acids, away from lactate production, remedied energy deficiency. When both glucose and glutamine were absent, intracellular ATP contents and the energy charge remained virtually unaltered.Revisions requested 16 December 2004; Revisions received 24 January 2005  相似文献   

17.
Glucose-stimulated insulin secretion (GSIS) is mediated in part by glucose metabolism-driven increases in ATP/ADP ratio, but by-products of mitochondrial glucose metabolism also play an important role. Here we investigate the role of the mitochondrial citrate/isocitrate carrier (CIC) in regulation of GSIS. Inhibition of CIC activity in INS-1-derived 832/13 cells or primary rat islets by the substrate analogue 1,2,3-benzenetricarboxylate (BTC) resulted in potent inhibition of GSIS, involving both first and second phase secretion. A recombinant adenovirus containing a CIC-specific siRNA (Ad-siCIC) dose-dependently reduced CIC expression in 832/13 cells and caused parallel inhibitory effects on citrate accumulation in the cytosol. Ad-siCIC treatment did not affect glucose utilization, glucose oxidation, or ATP/ADP ratio but did inhibit glucose incorporation into fatty acids and glucose-induced increases in NADPH/NADP+ ratio relative to cells treated with a control siRNA virus (Ad-siControl). Ad-siCIC also inhibited GSIS in 832/13 cells, whereas overexpression of CIC enhanced GSIS and raised cytosolic citrate levels. In normal rat islets, Ad-siCIC treatment also suppressed CIC mRNA levels and inhibited GSIS. We conclude that export of citrate and/or isocitrate from the mitochondria to the cytosol is an important step in control of GSIS.  相似文献   

18.
We show in the accompanying paper that the steady-state level of free Ca2+ maintained by the organelles of permeabilized RINm5F insulinoma cells varies inversely with the ATP/ADP ratio when this ratio is set by addition of creatine phosphokinase and fixed ratios of creatine to creatine phosphate. We, therefore, asked whether acute cyclic alterations in the cytosolic ATP/ADP ratio in the range known to modulate O2 consumption might be involved in regulating the physiological activity of Ca2+ -ATPases and the cytosolic free Ca2+ level. To explore this hypothesis we combined two experimental systems: 1) permeabilized RINm5F insulinoma cells that can maintain a low medium Ca2+ concentration and 2) a cell-free extract of rat skeletal muscle that spontaneously exhibits oscillatory behavior of glycolysis and linked oscillations in the ATP/ADP ratio, when provided with glucose. The free Ca2+ level maintained by the permeabilized cells oscillated in phase with the glycolytic oscillations and correlated closely with the ATP/ADP ratio but not with glucose 6-phosphate, fructose 6-phosphate, orthophosphate, or pH. When glucokinase replaced hexokinase as the glucose phosphorylating enzyme, Ca2+ oscillations were induced by increasing the glucose concentration from 2 to 8 mM. The results demonstrate a link between metabolite changes and free Ca2+ levels in a reconstituted physiological system. They support a model in which oscillations in glycolysis and the ATP/ADP ratio may cause oscillations in cytosolic free Ca2+, beta-cell electrical activity, and insulin release.  相似文献   

19.
Under conditions of energy impairment, CNS tissue can utilize substrates other than glucose to maintain energy metabolism. Retinas produce large amounts of lactate, although it has not been shown that lactate can be utilized by retina to prevent the cell damage associated with hypoglycemia. To investigate this, intact, isolated retinas were subjected to aglycemic conditions in the presence or absence of 20 mM lactate. Retinas incubated in the absence of glucose for 60 min showed a threefold elevation in tissue aspartate and 60% decreases in tissue glutamate and glutamine, demonstrating a mobilization of carbon from glutamine and glutamate to the tricarboxylic acid cycle. Lactate prevented these changes in tissue amino acids, indicating metabolism of lactate with sparing of tissue glutamate and glutamine. Tissue ATP was 20 and 66% of control values with zero glucose or zero glucose plus lactate, respectively. Consistent with previous findings, incubation of retinas in the absence of glucose caused acute swelling of retinal neurons and release of GABA into the medium at 60 min. These acute toxic affects caused by the absence of glucose were completely prevented by the presence of lactate. At 24 h of recovery following 60 min of zero glucose, many pyknotic profiles were observed and lactate dehydrogenase (LDH) release into the medium was elevated sevenfold, indicating the extent of cell death. In contrast, no elevation in LDH was found and histology appeared normal in retinas exposed to zero glucose in the presence of lactate. alpha-Cyano-4-hydroxy cinnamate (4-CIN; 0.5 mM), an inhibitor of the monocarboxylic acid transporter and mitochondrial pyruvate carrier, blocked the ability of lactate to maintain ATP and protect retinas from aglycemia but had no effect on ATP or toxicity per se. Derangements in tissue aspartate, glutamate, and glutamine, which were prevented by lactate during zero glucose incubation, were again observed with lactate plus zero glucose in the presence of 4-CIN. However, 0.5 mM 4-CIN alone in the presence of glucose produced similar increases in aspartate and decreases in glutamate and glutamine as observed with zero glucose while having only modest inhibitory effects on [U-(14)C]lactate uptake, suggesting the mitochondrial pyruvate carrier as the main site of action. The above findings show that lactate is readily utilized by the chick retina during glucose deprivation to prevent derangements in tissue amino acids and ATP and retinal neuronal cell death.  相似文献   

20.
The digitonin method for the separation of cytosolic and mitochondrial fractions was applied to liver cells isolated from foetal rats. The cytosolic [ATP]/[ADP] ratio approximately doubles during the last 4 days of gestation, whereas the mitochondrial ratio remains constant. In the presence of oligomycin and added glucose, the cytosolic [ATP]/[ADP] ratio does not increase with age, but is still considerably higher than the mitochondrial ratio. Without added glucose, and when the glycogen content of foetal liver is still very low (more than 3 days before birth), the cytosolic [ATP]/[ADP] ratio in the presence of oligomycin becomes very low and equal to the mitochondrial ratio. It is concluded that the increasein the cytosolic [ATP]/[ADP] ratio during the last 4 days of gestation is solely due to enhanced mitochondrial activity in this period. Atractyloside and bongkrekic acid do not influence the O2 consumption, nor the [ATP]/[ADP] ratios in either compartment of foetal liver cells. Respiration of isolated foetal mitochondria, however, is strongly inhibited by both compounds. The implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号