首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular enzymatic reduction of iron by microorganisms has not been appropriately considered. In this study the reduction and release of iron from ferrioxamine were examined using extracellular microbial iron reductases and compared to iron mobilization by chemical reductants, and to chelation by EDTA and desferrioxamine. A flavin semiquinone was formed during the enzymatic reduction of ferrioxamine, which was consistent with the 1 e(-) reduction of iron by an enzyme. The rates for the enzymatic reactions were substantially faster than both the 2 e(-) chemical reductions and the chelation reactions. The rapid rates of the enzymatic reduction reactions demonstrated that these enzymes are capable of accomplishing the extracellular mobilization of iron required by microorganisms. The data suggest that mechanistically there are two phases for the mobilization and transport of iron by those microorganisms that produce both extracellular iron reductases and siderophores, with reduction being the principle pathway.  相似文献   

2.
产嗜铁素砷抗性微生物在砷污染环境中的作用   总被引:1,自引:0,他引:1  
在砷污染环境中,许多微生物进化出了砷抗性,对地球环境中砷的命运起着决定性的作用。其次,由于自然条件下铁有效浓度低,微生物一般会表达嗜铁素,协助微生物吸收铁。嗜铁素除了与铁结合外,还可与多种金属离子形成稳定的复合物,促进环境中砷酸盐的溶解和亚砷酸盐的氧化。最后,产嗜铁素微生物有促进植物生长和促进或减弱植物吸收砷的可能性。因此,产嗜铁素砷抗性微生物可能具有在砷污染环境的修复中发挥作用的潜力。  相似文献   

3.
The possession of specialized iron transport systems may be crucial for bacteria to override the iron limitation imposed by the host or the environment. One of the most commonly found strategies evolved by microorganisms is the production of siderophores, low-molecular-weight iron chelators that have very high constants of association for their complexes with iron. Thus, siderophores act as extracellular solubilizing agents for iron from minerals or organic compounds, such as transferrin and lactoferrin in the host vertebrate, under conditions of iron limitation. Transport of iron into the cell cytosol is mediated by specific membrane receptor and transport systems which recognize the iron-siderophore complexes. In this review I have analyzed in detail three siderophore-mediated iron uptake systems: the plasmid-encoded anguibactin system of Vibrio anguillarum, the aerobactin-mediated iron assimilation system present in the pColV-K30 plasmid and in the chromosomes of many enteric bacteria, and the chromosomally encoded enterobactin iron uptake system, found in Escherichia coli, Shigella spp., Salmonella spp., and other members of the family Enterobacteriaceae. The siderophore systems encoded by Pseudomonas aeruginosa, namely, pyochelin and pyoverdin, as well as the siderophore amonabactin, specified by Aeromonas hydrophila, are also discussed. The potential role of siderophore-mediated systems as virulence determinants in the specific host-bacteria interaction leading to disease is also analyzed with respect to the influence of these systems in the expression of other factors, such as toxins, in the bacterial virulence repertoire.  相似文献   

4.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.  相似文献   

5.
Release of iron from various ferrisiderophores (ferripyoverdines, ferrioxamines B and E, ferricrocin, ferrichrome A, ferrienterobactin and its analog ferric N,N',N'-tri(1,3,5-Tris) 2,3-dihydroxybenzoylaminomethylbenzene) was obtained through an enzymic reduction of iron, involving NADH, FMN and the ferripyoverdine reductase of Pseudomonas aeruginosa PAO1. The iron released from the same complexes was also obtained through chemical reduction of iron involving FMNH2. Evidence is given that the enzymic process acts through a FMNH2 reduction; the P. aeruginosa enzyme, purified according to its ferripyoverdine-reductase activity [Hallé, F. & Meyer, J. M., Eur. J. Biochem. 209, 613-620], functions as a NADH:FMN oxidoreductase, the FMNH2 produced being able to chemically reduce the iron complexed by siderophores. The general occurrence of such a multi-step mechanism, which denies the existence of specific ferrisiderophore reductases, is discussed.  相似文献   

6.
Assimilation of iron by microorganisms requires the presence of ferric reductases which participate in the mobilization of iron from ferrisiderophores. The common structural and catalytic properties of these enzymes are described and shown to be identical to those of flavin reductases. This strongly suggests that, in general, the reduction of iron depends on reduced flavins provided by flavin reductases.  相似文献   

7.
Cyanobacteria are one of the most successful and oldest forms of life that are present on Earth. They are prokaryotic photoautotrophic microorganisms that colonize so diverse environments as soil, seawater, and freshwater, but also stones, plants, or extreme habitats such as snow and ice as well as hot springs. This diversity in the type of environment they live in requires a successful adaptation to completely different conditions. For this reason, cyanobacteria form a wide range of different secondary metabolites. In particular, the cyanobacteria living in both freshwater and sea produce many metabolites that have biological activity. In this review, we focus on metabolites called siderophores, which are low molecular weight chemical compounds specifically binding iron ions. They have a relatively low molecular weight and are produced by bacteria and also by fungi. The main role of siderophores is to obtain iron from the environment and to create a soluble complex available to microbial cells. Siderophores play an important role in microbial ecology; for example, in agriculture they support the growth of many plants and increase their production by increasing the availability of Fe in plants. The aim of this review is to demonstrate the modern use of physico-chemical methods for the detection of siderophores in cyanobacteria and the use of these methods for the detection and characterization of the siderophore-producing microorganisms. Using high-performance liquid chromatography-mass spectrometry (LC-MS), it is possible not only to discover new chemical structures but also to identify potential interactions between microorganisms. Based on tandem mass spectrometry (MS/MS) analyses, previous siderophore knowledge can be used to interpret MS/MS data to examine both known and new siderophores.  相似文献   

8.
Three separate classes of ribonucleotide reductases exist in nature. They differ widely in protein structure. Class I enzymes are found in aerobic bacteria and eukaryotes; class II enzymes are found in aerobic and anaerobic bacteria; class III enzymes are found in strict and facultative anaerobic bacteria. Usually, but not always, one organism contains only one or two (in facultative anaerobes) classes. Surprisingly, the genomic sequence of Pseudomonas aeruginosa contains sequences for each of the three classes. Here, we show by DNA hybridization that other species of Pseudomonas also contain the genes for three classes. Extracts from P. aeruginosa and P. stutzeri grown aerobically or microaerobically contain active class I and II enzymes, whereas we could not demonstrate class III activity. Unexpectedly, class I activity increased greatly during microaerobic conditions. The enzymes were separated, and the large proteins of the class I enzymes were obtained in close to homogeneous form. The catalytic properties of all enzymes are similar to those of other bacterial reductases. However, the Pseudomonas class I reductases required the continuous presence of oxygen during catalysis, unlike the corresponding Escherichia coli enzyme but similar to the mouse enzyme. In similarity searches, the amino acid sequence of the class I enzyme of P. aeruginosa was more related to that of eukaryotes than to that of E. coli or other proteobacteria, with the large protein showing 42% identity to that of the mouse, suggesting the possibility of a horizontal transfer of the gene. The results raise many questions concerning the physiological function and evolution of the three classes in Pseudomonas species.  相似文献   

9.
Günther Winkelmann 《Biometals》2007,20(3-4):379-392
Ecology of siderophores, as described in the present review, analyzes the factors that allow the production and function of siderophores under various environmental conditions. Microorganisms that excrete siderophores are able to grow in natural low-iron environments by extracting residual iron from insoluble iron hydroxides, protein-bound iron or from other iron chelates. Compared to the predominantly mobile bacteria, the fungi represent mostly immobile microorganisms that rely on local nutrient concentrations. Feeding the immobile is a general strategy of fungi and plants, which depend on the local nutrient resources. This also applies to iron nutrition, which can be improved by excretion of siderophores. Most fungi produce a variety of different siderophores, which cover a wide range of physico-chemical properties in order to overcome adverse local conditions of iron solubility. Resource zones will be temporally and spatially dynamic which eventually results in conidiospore production, transport to new places and outgrow of mycelia from conidiospores. Typically, extracellular and intracellular siderophores exist in fungi which function either in transport or storage of ferric iron. Consequently, extracelluar and intracellular reduction of siderophores may occur depending on the fungal strain, although in most fungi transport of the intact siderophore iron complex has been observed. Regulation of siderophore biosynthesis is essential in fungi and allows an economic use of siderophores and metabolic resources. Finally, the chemical stability of fungal siderophores is an important aspect of microbial life in soil and in the rhizosphere. Thus, insolubility of iron in the environment is counteracted by dissolution and chelation through organic acids and siderophores by various fungi.  相似文献   

10.
11.
The siderophore-producing ability of nickel-resistant Streptomyces acidiscabies E13 and the role of the elicited siderophores in promoting plant growth under iron and nickel stress are described. Siderophore assays indicated that S. acidiscabies E13 can produce siderophores. Electrospray ionization mass spectrometry (ESI-MS) revealed that the bacterium simultaneously produces 3 different hydroxamate siderophores. ESI-MS showed that in addition to iron, all 3 siderophores can bind nickel. In vitro plant growth tests were conducted with cowpea (Vigna unguiculata) in the presence and absence of the elicited siderophores. Culture filtrates containing hydroxamate siderophores significantly increased cowpea height and biomass, irrespective of the iron status of the plants, under nickel stress. The presence of reduced iron was found to be high in siderophore-containing treatments in the presence of nickel. Measurements of iron and nickel contents of cowpea roots and shoots indicated that the siderophore-mediated plant growth promotion reported here involves the simultaneous inhibition of nickel uptake and solubilization and supply of iron to plants. We conclude that hydroxamate siderophores contained in culture filtrates of S. acidiscabies E13 promoted cowpea growth under nickel contamination by binding iron and nickel, thus playing a dual role of sourcing iron for plant use and protecting against nickel toxicity.  相似文献   

12.
The photosynthetic picocyanobacteria and eukaryotic microorganisms that inhabit the open ocean must be able to supply iron for their photosynthetic and respiratory needs from the subnanomolar concentrations available in seawater. Neither group appears to produce siderophores, although some coastal cyanobacteria do. This is interpreted as an adaptation to the dilute oceanic environment rather than a phylogenetic constraint, since there are cases in which related taxa from different environments have the capacity to produce siderophores. Most photosynthetic marine microorganisms are presumably, however, capable of accessing iron from strong chelates since the majority of dissolved iron in seawater is complexed by organic ligands, including siderophores. Rather than direct internalization of siderophores and other iron chelates, marine organisms primarily appear to use uptake pathways that involve a reduction step to free bound iron, closely coupled with transport into the cell.  相似文献   

13.
Phage therapy is being reexamined as a strategy for bacterial control in medical and other environments. As microorganisms often live in mixed populations, we examined the effect of Escherichia coli bacteriophage λW60 and Pseudomonas aeruginosa bacteriophage PB-1 infection on the viability of monoculture and mixed-species biofilm and planktonic cultures. In mixed-species biofilm communities, E. coli and P. aeruginosa maintained stable cell populations in the presence of one or both phages. In contrast, E. coli planktonic populations were severely depleted in coculture in the presence of λW60. Both E. coli and P. aeruginosa developed phage resistance in planktonic culture; however, reduced resistance was observed in biofilm communities. Increased phage titers and reduced resistance in biofilms suggest that phage can replicate on susceptible cells in biofilms. Infectious phage could be released from mixed-culture biofilms upon treatment with Tween 20 but not upon treatment with chloroform. Tween 20 and chloroform treatments had no effect on phage associated with planktonic cells, suggesting that planktonic phage were not cell or matrix associated. Transmission electron microscopy showed bacteriophage particles to be enmeshed in the extracellular polymeric substance component of biofilms and that this substance could be removed by Tween 20 treatment. Overall, this study demonstrates how mixed-culture biofilms can maintain a reservoir of viable phage and bacterial populations in the environment.  相似文献   

14.
Siderophore-Mediated Iron Sequestering by Shewanella putrefaciens   总被引:1,自引:0,他引:1       下载免费PDF全文
The iron-sequestering abilities of 51 strains of Shewanella putrefaciens isolated from different sources (fish, water, and warm-blooded animals) were assessed. Thirty strains (60%) produced siderophores in heat-sterilized fish juice as determined by the chrome-azurol-S assay. All cultures were negative for the catechol-type siderophore, whereas 24 of the 30 siderophore-producing strains tested positive in the Csáky test, indicating the production of siderophores of the hydroxamate type. Siderophore-producing S. putrefaciens could to some degree cross-feed on the siderophores of other S. putrefaciens strains and on compounds produced by an Aeromonas salmonicida strain under iron-limited conditions. The siderophores of S. putrefaciens were not sufficiently strong to inhibit growth of other bacteria under iron-restricted conditions. However, siderophore-producing Pseudomonas bacteria were always inhibitory to S. putrefaciens under iron-limited conditions. Growth of siderophore-producing strains under iron-limited conditions induced the formation of one major new outer membrane protein of approximately 72 kDa. Two outer membrane proteins of approximately 53 and 23 kDa were not seen when iron was restricted.  相似文献   

15.
Nine strains of Frankia isolated from six Casuarinaceae (including four Casuarina sp., one Allocasuarina and one Gymnostoma) and one Elaeagnaceae (Hippophae¨ rhamnoides) were screened for growth and production of siderophores in an iron-deficient liquid medium. Siderophore production was detected only in four strains (Cj, G2, CH and G82) using the CAS and Arnow assays. Salicylates formed more than 90% and dihydroxybenzoates formed less than 10% of all catechol-type siderophores produced. Growth of the former strains was less affected by iron deficiency than that of strains Rif, Thr, URU, BR and RT which do not produce siderophores. Optimal siderophore production by strain Cj was noted when iron concentration reached 0.5μm and was completely inhibited at an iron concentration of 10μm. The kinetics of siderophore production by strain Cj showed that siderophore synthesis was detectable during the growth stationary phase. Growth of Cj (a siderophore-producing strain) and of RT (a non-siderophore-producing strain) differed when 2,2-dipyridyl or ethylene di(o-hydroxyphenyl) acetic acid (EDDHA) was added to the iron-deficient growth medium. Frankia strain RT was the most sensitive to the detrimental effect of both iron chelators.  相似文献   

16.
17.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N'-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using (59)Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

18.
19.
Nonmucoid Pseudomonas aeruginosa responds to iron deprivation by synthesizing the siderophores pyochelin and pyoverdine. When grown in iron-deficient medium, six mucoid P. aeruginosa strains isolated from cystic fibrosis patients synthesized copious amounts of the exopolysaccharide alginate. A procedure that eliminated the interference of alginate was developed so that siderophores could be extracted from the growth medium. All six isolates were then noted to produce both pyoverdine and pyochelin. This report thus confirms that mucoid P. aeruginosa, like its nonmucoid counterparts, elicits the siderophores commonly cited as those of the microbe.  相似文献   

20.
Iron is a metal required by most microorganisms and is prominently used in the transfer of electrons during metabolism. The gathering of iron is, then, an essential process and its fulfillment becomes a crucial pathogenetic event for zoopathogenic fungi. Iron is rather unavailable because it occurs on the earth's surface in its insoluble ferric form in oxides and hydroxides. In the infected host iron is bound to proteins such as transferrin and ferritin. Solubilization of ferric iron is the major problem confronting microorganisms. This process is achieved by two major mechanisms: ferric reduction and siderophore utilization. Ferric reductase is frequently accompanied by a copper oxidase transport system. There is one example of direct ferric iron transport apparently without prior reduction. Ferric reduction may also be accomplished by low molecular mass compounds. Some fungi have evolved a process of iron acquisition involving the synthesis of iron-gathering compounds called siderophores. Even those fungi that do not synthesize siderophores have developed permeases for transport of such compounds formed by other organisms. Fungi can also reductively release iron from siderophores and transport the ferrous iron often by the copper oxidase transport system. There is a great diversity of iron-gathering mechanisms expressed by pathogenic fungi and such diversity may be found even in a single species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号