首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Selection for a character controlled by additive genes induces linkage disequilibrium which reduces the additive genetic variance usable for further selective gains. Additive x additive epistasis contributes to selection response through development of linkage disequilibrium between interacting loci. To investigate the relative importance of the two effects of linkage disequilibrium, formulae are presented and results are reported of simulations using models involving additive, additive x additive and dominance components. The results suggest that so long as epistatic effects are not large relative to additive effects, and the proportion of pairs of loci which show epistasis is not very high, the predominant effect of linkage disequilibrium will be to reduce the rate of selection response.  相似文献   

2.
Height has been used for more than a century as a model by which to understand quantitative genetic variation in humans. We report that the entire genome appears to contribute to its additive genetic variance. We used genotypes and phenotypes of 11,214 sibling pairs from three countries to partition additive genetic variance across the genome. Using genome scans to estimate the proportion of the genomes of each chromosome from siblings that were identical by descent, we estimated the heritability of height contributed by each of the 22 autosomes and the X chromosome. We show that additive genetic variance is spread across multiple chromosomes and that at least six chromosomes (i.e., 3, 4, 8, 15, 17, and 18) are responsible for the observed variation. Indeed, the data are not inconsistent with a uniform spread of trait loci throughout the genome. Our estimate of the variance explained by a chromosome is correlated with the number of times suggestive or significant linkage with height has been reported for that chromosome. Variance due to dominance was not significant but was difficult to assess because of the high sampling correlation between additive and dominance components. Results were consistent with the absence of any large between-chromosome epistatic effects. Notwithstanding the proposed architecture of complex traits that involves widespread gene-gene and gene-environment interactions, our results suggest that variation in height in humans can be explained by many loci distributed over all autosomes, with an additive mode of gene action.  相似文献   

3.
4.

Background

Cockerham genetic models are commonly used in quantitative trait loci (QTL) analysis with a special feature of partitioning genotypic variances into various genetic variance components, while the F genetic models are widely used in genetic association studies. Over years, there have been some confusion about the relationship between these two type of models. A link between the additive, dominance and epistatic effects in an F model and the additive, dominance and epistatic variance components in a Cockerham model has not been well established, especially when there are multiple QTL in presence of epistasis and linkage disequilibrium (LD).

Results

In this paper, we further explore the differences and links between the F and Cockerham models. First, we show that the Cockerham type models are allelic based models with a special modification to correct a confounding problem. Several important moment functions, which are useful for partition of variance components in Cockerham models, are also derived. Next, we discuss properties of the F models in partition of genotypic variances. Its difference from that of the Cockerham models is addressed. Finally, for a two-locus biallelic QTL model with epistasis and LD between the loci, we present detailed formulas for calculation of the genetic variance components in terms of the additive, dominant and epistatic effects in an F model. A new way of linking the Cockerham and F model parameters through their coding variables of genotypes is also proposed, which is especially useful when reduced F models are applied.

Conclusion

The Cockerham type models are allele-based models with a focus on partition of genotypic variances into various genetic variance components, which are contributed by allelic effects and their interactions. By contrast, the F regression models are genotype-based models focusing on modeling and testing of within-locus genotypic effects and locus-by-locus genotypic interactions. When there is no need to distinguish the paternal and maternal allelic effects, these two types of models are transferable. Transformation between an F model's parameters and its corresponding Cockerham model's parameters can be established through a relationship between their coding variables of genotypes. Genetic variance components in terms of the additive, dominance and epistatic genetic effects in an F model can then be calculated by translating formulas derived for the Cockerham models.
  相似文献   

5.
Maize (Zea mays L.) breeders have used several genetic-statistical models to study the inheritance of quantitative traits. These models provide information on the importance of additive, dominance, and epistatic genetic variance for a quantitative trait. Estimates of genetic variances are useful in understanding heterosis and determining the response to selection. The objectives of this study were to estimate additive and dominance genetic variances and the average level of dominance for an F2 population derived from the B73 x Mo17 hybrid and use weighted least squares to determine the importance of digenic epistatic variances relative to additive and dominance variances. Genetic variances were estimated using Design III and weighted least squares analyses. Both analyses determined that dominance variance was more important than additive variance for grain yield. For other traits, additive genetic variance was more important than dominance variance. The average level of dominance suggests either overdominant gene effects were present for grain yield or pseudo-overdominance because of linkage disequilibrium in the F2 population. Epistatic variances generally were not significantly different from zero and therefore were relatively less important than additive and dominance variances. For several traits estimates of additive by additive epistatic variance decreased estimates of additive genetic variance, but generally the decrease in additive genetic variance was not significant.  相似文献   

6.
Melchinger AE  Utz HF  Schön CC 《Genetics》2008,178(4):2265-2274
Interpretation of experimental results from quantitative trait loci (QTL) mapping studies on the predominant type of gene action can be severely affected by the choice of statistical model, experimental design, and provision of epistasis. In this study, we derive quantitative genetic expectations of (i) QTL effects obtained from one-dimensional genome scans with the triple testcross (TTC) design and (ii) pairwise interactions between marker loci using two-way analyses of variance (ANOVA) under the F(2)- and the F(infinity)-metric model. The theoretical results show that genetic expectations of QTL effects estimated with the TTC design are complex, comprising both main and epistatic effects, and that genetic expectations of two-way marker interactions are not straightforward extensions of effects estimated in one-dimensional scans. We also demonstrate that the TTC design can partially overcome the limitations of the design III in separating QTL main effects and their epistatic interactions in the analysis of heterosis and that dominance x additive epistatic interactions of individual QTL with the genetic background can be estimated with a one-dimensional genome scan. Furthermore, we present genetic expectations of variance components for the analysis of TTC progeny tested in a split-plot design, assuming digenic epistasis and arbitrary linkage.  相似文献   

7.
Summary Tassel branch numbers of six crosses of maize (Zea mays L.) were analyzed to determine inheritance of this trait. Generation mean analyses were used to estimate genetic effects, and additive and nonadditive components of variance were calculated and evaluated for bias due to linkage. Both narrow-sense and broad-sense heritabilities were estimated. Additive genetic variance estimates were significant in five of the six crosses, whereas estimates of variance due to nonadditive components were significant in only three crosses. Additionally, estimates of additive variance components usually were larger than corresponding nonadditive components. There was no evidence for linkage bias in these estimates. Estimates of additive genetic effects were significant in four of six crosses, but significant dominance, additive × additive and additive × dominance effects also were detected. Additive, dominance, and epistatic gene action, therefore, all influenced the inheritance of tassel branch number, but additive gene action was most important. Both narrow-sense and broadsense heritability estimates were larger than those reported for other physiological traits of maize and corroborated conclusions concerning the importance of additive gene action inferred from analyses of genetic effects and variances. We concluded that selection for smalltasseled inbreds could be accomplished most easily through a mass-selection and/or pedigree-selection system. Production of a small-tasseled hybrid would require crossing of two small-tasseled inbreds. We proposed two genetic models to explain unexpected results obtained for two crosses. One model involved five interacting loci and the other employed two loci displaying only additive and additive × additive gene action.Journal Paper No. J-9231 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011. Project No. 2152  相似文献   

8.
Modeling quantitative trait Loci and interpretation of models   总被引:8,自引:0,他引:8       下载免费PDF全文
Zeng ZB  Wang T  Zou W 《Genetics》2005,169(3):1711-1725
A quantitative genetic model relates the genotypic value of an individual to the alleles at the loci that contribute to the variation in a population in terms of additive, dominance, and epistatic effects. This partition of genetic effects is related to the partition of genetic variance. A number of models have been proposed to describe this relationship: some are based on the orthogonal partition of genetic variance in an equilibrium population. We compare a few representative models and discuss their utility and potential problems for analyzing quantitative trait loci (QTL) in a segregating population. An orthogonal model implies that estimates of the genetic effects are consistent in a full or reduced model in an equilibrium population and are directly related to the partition of the genetic variance in the population. Linkage disequilibrium does not affect the estimation of genetic effects in a full model, but would in a reduced model. Certainly linkage disequilibrium would complicate the detection of QTL and epistasis. Using different models does not influence the detection of QTL and epistasis. However, it does influence the estimation and interpretation of genetic effects.  相似文献   

9.
Hallander J  Waldmann P 《Heredity》2007,98(6):349-359
Additive genetic variance might usually be expected to decrease in a finite population because of genetic drift. However, both theoretical and empirical studies have shown that the additive genetic variance of a population could, in some cases, actually increase owing to the action of genetic drift in presence of non-additive effects. We used Monte-Carlo simulations to address a less-well-studied issue: the effects of directional truncation selection on a trait affected by non-additive genetic variation. We investigated the effects on genetic variance and the response to selection. We compared two different genetic models, representing various numbers of loci. We found that the additive genetic variance could also increase in the case of truncation selection, when dominance and epistasis was present. Additive-by-additive epistatic effects generally gave a higher increase in additive variance compared to dominance. However, the magnitude of the increase differed depending on the particular model and on the number of loci.  相似文献   

10.
Epistasis plays an important role as genetic basis of heterosis in rice   总被引:6,自引:0,他引:6  
Thegeneticbasisofheterosisisstilladebatingissue.Twohypotheses,thedominancehypothesisandtheoverdominancehypothesis,bothproposedin1908[1—3],havecompetedformostpartofthiscentury.Althoughmanyresearcherspreferonehypothesistotheother,experimentaldataallowingforcr…  相似文献   

11.
Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.  相似文献   

12.
Disease association with a genetic marker is often taken as a preliminary indication of linkage with disease susceptibility. However, population subdivision and admixture may lead to disease association even in the absence of linkage. In a previous paper, we described a test for linkage (and linkage disequilibrium) between a genetic marker and disease susceptibility; linkage is detected by this test only if association is also present. This transmission/disequilibrium test (TDT) is carried out with data on transmission of marker alleles from parents heterozygous for the marker to affected offspring. The TDT is a valid test for linkage and association, even when the association is caused by population subdivision and admixture. In the previous paper, we did not explicitly consider the effect of recent history on population structure. Here we extend the previous results by examining in detail the effects of subdivision and admixture, viewed as processes in population history. We describe two models for these processes. For both models, we analyze the properties of (a) the TDT as a test for linkage (and association) between marker and disease and (b) the conventional contingency statistic used with family data to test for population association. We show that the contingency test statistic does not have a chi 2 distribution if subdivision or admixture is present. In contrast, the TDT remains a valid chi 2 statistic for the linkage hypothesis, regardless of population history.  相似文献   

13.
Causal mutations and their intra- and inter-locus interactions play a critical role in complex trait variation. It is often not easy to detect epistatic quantitative trait loci (QTL) due to complicated population structure requirements for detecting epistatic effects in linkage analysis studies and due to main effects often being hidden by interaction effects. Mapping their positions is even harder when they are closely linked. The data structure requirement may be overcome when information on linkage disequilibrium is used. We present an approach using a mixed linear model nested in an empirical Bayesian approach, which simultaneously takes into account additive, dominance and epistatic effects due to multiple QTL. The covariance structure used in the mixed linear model is based on combined linkage disequilibrium and linkage information. In a simulation study where there are complex epistatic interactions between QTL, it is possible to simultaneously map interacting QTL into a small region using the proposed approach. The estimated variance components are accurate and less biased with the proposed approach compared with traditional models.  相似文献   

14.
The genetic basis of traits involved in reproductive isolation is a key parameter in models of sympatric speciation by sexual selection, a potential mechanism driving the explosive radiation of East African cichlids. Analysis of hybrid crosses between two sympatric Lake Malawi cichlid species, representing the extremes of the extant colour distribution, generated Castle-Wright estimates of four to seven loci controlling colour differences. Segregation patterns deviated from a purely additive model with a significant contribution from dominance, and possibly also epistasis. Evidence was found for a strong influence of autosomal loci. As departures from simple additive variation could effect the operation of models of sympatric speciation, dominance and epistasis should not be neglected.  相似文献   

15.
家蚕茧质性状的QTL定位研究   总被引:3,自引:0,他引:3  
采用QTLMapper 2.0 QTL作图软件,对F2群体的家蚕全茧量、茧层量、茧层率和蛹体重等性状进行了QTL定位分析,分别检测出7个、6个、2个、8个有显著效应分量的QTLs,分布于7个、5个、2个、7个不同的连锁群。控制全茧量、茧层量的QTLs一般存在复杂的上位性效应。对全茧量性状,有3对QTLs存在显著的加加上位性效应,其中1对还存在加显、显显互作;共有3个QTLs存在显著的显性效应,1个存在显著的加性效应。对茧层量QTLs,发现1对QTLs存在极显著的各项遗传效应,包括上位性效应;1对QTLs被检测到显著的显显互作,1个QTL具有显著的显性效应,并与另一个QTL存在显著的加加互作。茧层率、蛹体重主要受加性或显性的QTLs作用,没有发现茧层率QTLs的上位性效应,蛹体重的有效QTL大都呈现显著的负向显性效应,只有一对QTLs存在显著的加加上位性效应。第2、3、4、11、13、24、34、37、40连锁群是两个或多个性状QTLs分布的共同连锁群。全茧量和茧层量存在共同的QTL或染色体区域,育种上可通过适当选配,利用基因的互作效应,同步改良这两个性状。  相似文献   

16.
A genome scan of approximately 12-cM initial resolution was done on 50 of a set of 51 carefully ascertained unilineal multiplex families segregating the bipolar affective disorder phenotype. In addition to standard multipoint linkage analysis methods, a simultaneous-search algorithm was applied in an attempt to surmount the problem of genetic heterogeneity. The results revealed no linkage across the genome. The results exclude monogenic models and make it unlikely that two genes account for the disease in this sample. These results support the conclusion that at least several hundred kindreds will be required in order to establish linkage of susceptibility loci to bipolar disorder in heterogeneous populations.  相似文献   

17.
T. Hayashi  Y. Ukai 《Genetics》1994,136(2):693-704
In this study we show how the genetic variance of a quantitative trait changes in a self-fertilizing population under repeated cycles of truncation selection, with the analysis based on the infinitesimal model in which it is assumed that the trait is determined by an infinite number of unlinked loci without epistasis. The genetic variance is reduced not as a consequence of the genotypic frequency change but due to the build-up of linkage disequilibrium under truncation selection in this model. We assume that the order of the genotypic contribution from each locus is n(-1/2), where n is the number of loci involved, and investigate the change in linkage disequilibrium resulting from selection and self-fertilization using genotypic frequency dynamics in order to analyze the change in the genetic variance. Our analysis gives recurrence relations of genetic variance among the succeeding generations for the three cases of gene action, i.e., purely additive action, pure dominance without additive effect and the presence of both additive effect and dominance, respectively. Numerical examples are also given as a check on the recurrence formulas.  相似文献   

18.
Zhao J  Boerwinkle E  Xiong M 《Human genetics》2007,121(3-4):357-367
Availability of a large collection of single nucleotide polymorphisms (SNPs) and efficient genotyping methods enable the extension of linkage and association studies for complex diseases from small genomic regions to the whole genome. Establishing global significance for linkage or association requires small P-values of the test. The original TDT statistic compares the difference in linear functions of the number of transmitted and nontransmitted alleles or haplotypes. In this report, we introduce a novel TDT statistic, which uses Shannon entropy as a nonlinear transformation of the frequencies of the transmitted or nontransmitted alleles (or haplotypes), to amplify the difference in the number of transmitted and nontransmitted alleles or haplotypes in order to increase statistical power with large number of marker loci. The null distribution of the entropy-based TDT statistic and the type I error rates in both homogeneous and admixture populations are validated using a series of simulation studies. By analytical methods, we show that the power of the entropy-based TDT statistic is higher than the original TDT, and this difference increases with the number of marker loci. Finally, the new entropy-based TDT statistic is applied to two real data sets to test the association of the RET gene with Hirschsprung disease and the Fcγ receptor genes with systemic lupus erythematosus. Results show that the entropy-based TDT statistic can reach p-values that are small enough to establish genome-wide linkage or association analyses.  相似文献   

19.
A quantitative genetic model, that uses known family structure with clonal replicates to separate genetic variance into its additive, dominance and epistatic components, is available in the current literature. Making use of offspring testing, this model is based on the theory that components of variance from the linear model of an experimental design may be expressed in terms of expected covariances among relatives. However, if interactions between a pair of quantitative trait loci (QTLs) explain a large proportion of the total epistasis, it will seriously overestimate the additive and dominance variances but underestimate the epistatic variance. In the present paper, a new model is developed to manipulate this problem by combining parental and offspring material into the same test. Under the condition described above, the new model can provide an accurate estimate for additive x additive variances. Also, its accuracy in estimating dominance and total epistatic variances is much greater than the accuracy of the previous model. However, if there is obvious evidence showing the major contribution of high-order interactions, especially among 4QTLs, to the total epistasis, the previous model is more appropriate to partition the genetic variance for a quantitative trait. The re-analysis of an example from a factorial mating design in poplar shows large differences in estimating variance components between the new and previous models when two different assumptions (lowvs high-order epistatic interactions) are used. The new model will be an alternative to estimating the mode of quantitative inheritance for species, especially for longlived, predominantly outcrossing forest trees, that can be clonally replicated.  相似文献   

20.
We apply new analytical methods to understand the consequences of population bottlenecks for expected additive genetic variance. We analyze essentially all models for multilocus epistasis that have been numerically simulated to demonstrate increased additive variance. We conclude that for biologically plausible models, large increases in expected additive variance--attributable to epistasis rather than dominance--are unlikely. Naciri-Graven and Goudet (2003) found that as the number of epistatically interacting loci increases, additive variance tends to be inflated more after a bottleneck. We argue that this result reflects biologically unrealistic aspects of their models. Specifically, as the number of loci increases, higher-order epistatic interactions become increasingly important in these models, with an increasing fraction of the genetic variance becoming nonadditive, contrary to empirical observations. As shown by Barton and Turelli (2004), without dominance, conversion of nonadditive to additive variance depends only on the variance components and not on the number of loci per se. Numerical results indicating that more inbreeding is needed to produce maximal release of additive variance with more loci follow directly from our analytical results, which show that high levels of inbreeding (F > 0.5) are needed for significant conversion of higher-order components. We discuss alternative approaches to modeling multilocus epistasis and understanding its consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号