首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
3.
4.
The efficiency of RNA interference (RNAi) delivery to L1 through L3 stage worms of the sheep parasitic nematode Trichostrongylus colubriformis was investigated using several techniques. These were: (i) feeding of Escherichia coli expressing double stranded RNA (dsRNA); (ii) soaking of short interfering (synthetic) RNA oligonucleotides (siRNA) or in vitro transcribed dsRNA molecules; and (iii) electroporation of siRNA or in vitro transcribed dsRNA molecules. Ubiquitin and tropomyosin were used as a target gene because they are well conserved genes whose DNA sequences are available for several nematode parasite species. Ubiquitin siRNA or dsRNA delivered by soaking or electroporation inhibited development in T. colubriformis but with feeding as a delivery method, RNAi of ubiquitin was not successful. Feeding was, however, successful with tropomyosin as a target, suggesting that mode of delivery is an important parameter of RNAi. Electroporation is a particularly efficient means of inducing RNA in nematodes with either short dsRNA oligonucleotides or with long in vitro transcribed dsRNA molecules. These methods permit routine delivery of dsRNA for RNAi in T. colubriformis larval stage parasites and should be applicable to moderate to high-throughput screening.  相似文献   

5.
6.
Here we report the use of double-stranded RNA (dsRNA) and morpholino technologies to specifically 'knock down' gene expression in early postimplantation mouse embryos. Sequence specific interference mediated by either dsRNA or by morpholino has been a useful tool for studying gene function in several organisms. However, specifically for the dsRNA, doubts have been raised about whether it could successfully be applied on vertebrate embryos. We demonstrate that electroporation of dsRNA directed against Otx2 or Foxa2 into postimplantation mouse embryos results in specific knock down of the expression of the respective endogenous genes in a region- and germ-layer specific manner. We also show that electroporation of morpholino directed against Foxa2 into the node of mouse embryos leads to a specific down regulation of Foxa2 expression in the floor plate. Our results demonstrate for the first time that dsRNA and morpholino technologies can be successfully applied in early postimplantation mouse embryos to specifically knock down gene expression.  相似文献   

7.
The prospects for development of highly specific pesticides based on double stranded ribonucleic acid have been a recent focus of scientific research. Creative applications have been proposed and demonstrated. However, not all insects are sensitive to double stranded RNA (dsRNA) gene knockdown effects; applications in the order Lepidoptera, for example, have met with varied success. Gene knockdown has been demonstrated in several species in the order Hemiptera. In our laboratory, knockdown experiments relied on microinjection of dsRNA into the hemocoel of the tarnished plant bug, Lygus lineolaris. Subsequent experiments delivering dsRNA to insects by feeding were repeatedly unsuccessful in demonstrating knockdown, and a hypothesis was formulated that the dsRNA was digested and degraded by the insect prior to contact with the insect cells. Exposure of dsRNA to insect saliva, insect salivary glands, and insect hemolymph was compared with commercial RNAase III. The saliva of L. lineolaris was found to rapidly digest double stranded RNA. RNAase inhibitor did not affect the activity but heat treatment slowed enzymatic activity.  相似文献   

8.
In this study we assessed three technologies for silencing gene expression by RNA interference (RNAi) in the sheep parasitic nematode Haemonchus contortus. We chose as targets five genes that are essential in Caenorhabditis elegans (mitr-1, pat-12, vha-19, glf-1 and noah-1), orthologues of which are present and expressed in H. contortus, plus four genes previously tested by RNAi in H. contortus (ubiquitin, tubulin, paramyosin, tropomyosin). To introduce double-stranded RNA (dsRNA) into the nematodes we tested (1) feeding free-living stages of H. contortus with Escherichia coli that express dsRNA targetting the test genes; (2) electroporation of dsRNA into H. contortus eggs or larvae; and (3) soaking adult H. contortus in dsRNA. For each gene tested we observed reduced levels of mRNA in the treated nematodes, except for some electroporation conditions. We did not observe any phenotypic changes in the worms in the electroporation or dsRNA soaking experiments. The feeding method, however, elicited observable changes in the development and viability of larvae for five of the eight genes tested, including the 'essential' genes, Hc-pat-12, Hc-vha-19 and Hc-glf-1. We recommend the E. coli feeding method for RNAi in H. contortus and provide recommendations for future research directions for RNAi in this species.  相似文献   

9.
10.
The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing   总被引:1,自引:0,他引:1  
Many metazoan cells can take up exogenous double-stranded (ds) RNA and use it to initiate an RNA silencing response, however, the mechanism for this uptake is ill-defined. Here, we identify the pathway for dsRNA uptake in Drosophila melanogaster S2 cells. Biochemical and cell biological analyses, and a genome-wide screen for components of the dsRNA-uptake machinery, indicated that dsRNA is taken up by an active process involving receptor-mediated endocytosis. Pharmacological inhibition of endocytic pathways disrupted exogenous dsRNA entry and the induction of gene silencing. This dsRNA uptake mechanism seems to be evolutionarily conserved, as knockdown of orthologues in Caenorhabditis elegans inactivated the RNA interference response in worms. Thus, this entry pathway is required for systemic RNA silencing in whole organisms. In Drosophila cells, pharmacological evidence suggests that dsRNA entry is mediated by pattern-recognition receptors. The possible role of these receptors in dsRNA entry may link RNA interference (RNAi) silencing to other innate immune responses.  相似文献   

11.
12.
13.
RNA interference (RNAi) is a promising technology for the development of next-generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW), Spodoptera frugiperda by conjugating double-stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell-conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi–dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi–dsIAP fed to FAW larvae induced knockdown of iap gene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan-conjugated 32P-UTP-labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.  相似文献   

14.
15.
RNAi技术在昆虫功能基因研究中的应用进展   总被引:5,自引:1,他引:4  
RNA干扰(RNA interference,RNAi)是指外源或内源的双链RNA(dsRNA)特异性地引起基因表达沉默的现象,它作为一种有效的工具用来产生转录后沉默,从而抑制特定基因的表达,成为基因功能研究的一种新方法,除了在模式昆虫如果蝇Drosophila中广泛应用之外,也在非模式昆虫中得到成功应用。近年来,RNAi技术在导入方法和基因功能分析方面都取得了飞速发展,且与转基因技术相结合成功应用于害虫防治领域。本文综述了RNAi技术在导入方法、昆虫功能基因组功能分析及害虫防治等领域新近的研究成果,并展望了该技术的应用前景。  相似文献   

16.
Effective RNA interference (RNAi) methods have been developed in many pest species, enabling exploration of gene function. Until now RNAi had not been attempted in the cat flea, Ctenocephalides felis, although the development of RNAi approaches would open up potential avenues for control of this important pest. This study aimed to establish if an RNAi response occurs in adult C. felis upon exposure to double-stranded RNA (dsRNA), which administration methods for dsRNA delivery could bring about effective gene knockdown and to investigate dynamics of any RNAi response. Knockdown of 80% of GSTσ was achieved by intrahaemoceolic microinjection of dsGSTσ but this invasive technique was associated with relatively high mortality rates. Immersing C. felis in dsGSTσ or dsDicer-2 overnight resulted in 65% knockdown of GSTσ or 60% of Dicer-2, respectively, and the degree of knockdown was not improved by increasing the dsRNA concentration in the bathing solution. Unexpectedly, the greatest degree of knockdown was achieved with the continuous administration of dsRNA in whole blood via a membrane feeding system, resulting in 96% knockdown of GSTσ within 2?days and sustained up to, at least, 7?days. Thus, unlike in many other species, the gut nucleases do not impair the RNAi response to ingested dsRNA in C. felis. A modest, but significant, upregulation of Dicer-2 and Argonaute2 was detectable 3?h after exposure to exogenous dsRNA, implicating the short-interfering RNA pathway. To our knowledge this study represents the first demonstration of experimentally induced RNAi in the cat flea as well as giving insight into how the gene knockdown response progresses.  相似文献   

17.
RNA interference (RNAi) technology enables to study specific gene functions also in social insects, which are otherwise difficult to access for genetic manipulations. The recent sequencing of the genomes from seven ant species made these members of the Formicidae available for knockdown studies. However, for this purpose the RNAi technology first needs to be adapted for application in ants. Studies on other insects show that the effectiveness of RNAi is quite species-specific and can depend on several experimental parameters such as the investigated stage of the insect, the target gene and/or the dsRNA delivery method. RNAi in ants through feeding of dsRNA is a preferable approach, since knockdown can be achieved in individuals without interfering with the animal’s physiology in contrast to injection of dsRNA. Here, we present a protocol for gene knockdown in Formicidae by feeding of dsRNA to worker animals. The expression of a peptidoglycan recognition protein gene, PGRP-LB, was efficiently knocked down in the body of Camponotus floridanus worker ants. Moreover, we describe a relatively cheap method to extract dsRNA from bacteria in order to obtain large quantities needed for feeding experiments.  相似文献   

18.
Mass sequencing of cDNA libraries from salivary glands of triatomines has resulted in the identification of many novel genes of unknown function. The aim of the present work was to develop a functional RNA interference (RNAi) technique for Rhodnius prolixus, which could be widely used for functional genomics studies in triatomine bugs. To this end, we investigated whether double-stranded RNA (dsRNA) can inhibit gene expression of R. prolixus salivary nitrophorin 2 (NP2) and what impact this might have on anticoagulant and apyrase activity in the saliva. dsRNA was introduced by two injections or by ingestion. RT-PCR of the salivary glands showed that injections of 15 microg of NP2 dsRNA in fourth-instar nymphs reduced gene expression by 75+/-14% and that feeding 1 microg/microL of NP2 dsRNA into second-instar nymphs (approx. 13 microg in total) reduced gene expression by 42+/-10%. Phenotype analysis showed that saliva of normal bugs prolonged plasma coagulation by about four-fold when compared to saliva of knockdown bugs. These results and the light color of the salivary gland content from some insects are consistent with the knockdown findings. The findings suggest that RNAi will prove a highly valuable functional genomics technique in triatomine bugs. The finding that feeding dsRNA can induce knockdown is novel for insects.  相似文献   

19.
20.
Suppression of gene expression by RNA interference in cultured plant cells   总被引:5,自引:0,他引:5  
Suppression by double-stranded RNA (dsRNA) of the expression of a target gene is known as RNA interference (RNAi). No quantitative analysis of the effects of RNAi on the expression of specific genes in cultured plant cells has been reported. However, as it is possible to produce populations of cultured plant cells that are uniform and divide synchronously for functional analysis of genes of interest, we performed a quantitative study of the effects of RNAi in such cells. We constructed dsRNA expression plasmids for a luciferase gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter by simply connecting sense and antisense sequences in a head-to-head manner. An RNAi effect was observed 24 hours after the introduction of dsRNA expression plasmids into tobacco BY-2 cells by electroporation. The simple system for suppression of specific genes in plant cells should be useful in attempts to elucidate the roles of individual genes in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号