首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Intraspecific variation in flooding tolerance is the basic pre-condition for adaptive flooding tolerance to evolve, and flooding-induced shoot elongation is an important trait that enables plants to survive shallow, prolonged flooding. Here an investigation was conducted to determine to what extent variation in flooding-induced leaf elongation exists among and within populations of the wetland species Rumex palustris, and whether the magnitude of elongation can be linked to habitat characteristics.

Methods

Offspring of eight genotypes collected in each of 12 populations from different sites (ranging from river mudflats with dynamic flooding regimes to areas with stagnant water) were submerged, and petioles, laminas and roots were harvested separately to measure traits related to elongation and plant growth.

Key Results

We found strong elongation of petioles upon submergence, and both among- and within-population variation in this trait, not only in final length, but also in the timing of the elongation response. However, the variation in elongation responses could not be linked to habitat type.

Conclusions

Spatio-temporal variation in the duration and depth of flooding in combination with a presumably weak selection against flooding-induced elongation may have contributed to the maintenance of large genetic variation in flooding-related traits among and within populations.  相似文献   

2.
3.
4.
The submergence-tolerant species Rumex palustris (Sm.) responds to complete submergence by an increase in petiole angle with the horizontal. This hyponastic growth, in combination with stimulated elongation of the petiole, can bring the leaf tips above the water surface, thus restoring gas exchange and enabling survival. Using a computerized digital camera set-up the kinetics of this hyponastic petiole movement and stimulated petiole elongation were studied. The hyponastic growth is a relatively rapid process that starts after a lag phase of 1.5 to 3 h and is completed after 6 to 7 h. The kinetics of hyponastic growth depend on the initial angle of the petiole at the time of submergence, a factor showing considerable seasonal variation. For example, lower petiole angles at the time of submergence result in a shorter lag phase for hyponastic growth. This dependency of the hyponastic growth kinetics can be mimicked by experimentally manipulating the petiole angle at the time of submergence. Stimulated petiole elongation in response to complete submergence also shows kinetics that are dependent on the petiole angle at the time of submergence, with lower initial petiole angles resulting in a longer lag phase for petiole elongation. Angle manipulation experiments show that stimulated petiole elongation can only start when the petiole has reached an angle of 40 degrees to 50 degrees. The petiole can reach this "critical angle" for stimulated petiole elongation by the process of hyponastic growth. This research shows a functional dependency of one response to submergence in R. palustris (stimulated petiole elongation) on another response (hyponastic petiole growth), because petiole elongation can only contribute to the leaf reaching the water surface when the petiole has a more or less upright position.  相似文献   

5.
6.
Rosettes of flooding-resistant Rumex palustris plants show a submergence-induced stimulation of elongation, which is confined to the petioles of young leaves. This response increases the probability of survival. It is induced by ethylene that accumulates in submerged tissues. Flooding-intolerant Rumex acetosella plants do not show this response. We investigated whether differences in shoot elongation between the species, between old and young leaves and between the petiole and leaf blade of a R. palustris plant result from differences in internal ethylene concentration or in sensitivity to the gas. Concentrations of free and conjugated ACC in petioles and leaf blades of R. palustris indicated that ethylene is synthesized throughout the submerged shoot, although production rates varied locally. Nevertheless, no differences in ethylene concentration were found between submerged leaves of various ages. In contrast, dose-response curves showed that only elongation of young petioles of R. palustris was sensitive to ethylene. In R. acetosella, elongation of all leaves was insensitive to ethylene. We conclude that variation in ethylene sensitivity rather than content explains the differences in submergence-induced shoot elongation between the two Rumex species and between leaves of R. palustris.  相似文献   

7.

Background and Aims

Complete submergence is an important stress factor for many terrestrial plants, and a limited number of species have evolved mechanisms to deal with these conditions. Rumex palustris is one such species and manages to outgrow the water, and thus restore contact with the atmosphere, through upward leaf growth (hyponasty) followed by strongly enhanced petiole elongation. These responses are initiated by the gaseous plant hormone ethylene, which accumulates inside plants due to physical entrapment. This study aimed to investigate the kinetics of ethylene-induced leaf hyponasty and petiole elongation.

Methods

Leaf hyponasty and petiole elongation was studied using a computerized digital camera set-up followed by image analyses. Linear variable displacement transducers were used for fine resolution monitoring and measurement of petiole growth rates.

Key Results

We show that submergence-induced hyponastic growth and petiole elongation in R. palustris can be mimicked by exposing plants to ethylene. The petiole elongation response to ethylene is shown to depend on the initial angle of the petiole. When petiole angles were artificially kept at 0°, rather than the natural angle of 35°, ethylene could not induce enhanced petiole elongation. This is very similar to submergence studies and confirms the idea that there are endogenous, angle-dependent signals that influence the petiole elongation response to ethylene.

Conclusions

Our data suggest that submergence and ethylene-induced hyponastic growth and enhanced petiole elongation responses in R. palustris are largely similar. However, there are some differences that may relate to the complexity of the submergence treatment as compared with an ethylene treatment.  相似文献   

8.
9.
10.
Survival and growth of terrestrial plants is negatively affected by complete submergence. This is mainly the result of hampered gas exchange between plants and their environment, since gas diffusion is severely reduced in water compared with air, resulting in O2 deficits which limit aerobic respiration. The continuation of photosynthesis could probably alleviate submergence-stress in terrestrial plants, but its potential under water will be limited as the availability of CO2 is hampered. Several submerged terrestrial plant species, however, express plastic responses of the shoot which may reduce gas diffusion resistance and enhance benefits from underwater photosynthesis. In particular, the plasticity of the flooding-tolerant terrestrial species Rumex palustris turned out to be remarkable, making it a model species suitable for the study of these responses. During submergence, the morphology and anatomy of newly developed leaves changed: 'aquatic' leaves were thinner and had thinner cuticles. As a consequence, internal O2 concentrations and underwater CO2 assimilation rates were higher at the prevailing low CO2 concentrations in water. Compared with heterophyllous amphibious plant species, underwater photosynthesis rates of terrestrial plants may be very limited, but the effects of underwater photosynthesis on underwater survival are impressive. A combination of recently published data allowed quantification of the magnitude of the acclimation response in this species. Gas diffusion resistance in terrestrial leaves underwater was about 15,000 times higher than in air. Strikingly, acclimation to submergence reduced this factor to 400, indicating that acclimated leaves of R. palustris had an approximately 40 times lower gas diffusion resistance than non-acclimated ones.  相似文献   

11.
We explored the adaptive significance of developmental plasticity in the tropical butterfly Bicyclus anynana using two experiments including temperature changes during ontogeny. In contrast to previous findings on adult acclimation, we could not find any evidence in support of adaptive developmental plasticity, as survival until adulthood was not enhanced when larval rearing temperatures matched the temperatures experienced during prepupal or pupal development. Extreme temperatures substantially reduced survival, supporting the ‘optimal developmental temperature’ hypothesis. Metamorphosis was more efficient at the higher rearing temperature of 27 °C, where egg hatching success was also higher, indicating that the lower temperature of 20 °C is already slightly stressful for this tropical butterfly.  相似文献   

12.
Fitness consequences of egg-size variation in the lesser snow goose   总被引:1,自引:0,他引:1  
We investigated the relationship between eggsize variation and (a) egg hatching success, (b) chick survival to fledging and recruitment, and (c) adult female survival, over 12 years in the lesser snow goose (Anser caerulescens caerulescens). By comparing the means and variances of egg size for successful and unsuccessful eggs, our aim was to assess the relative fitness of eggs of different sizes and to determine the type of selection operating on egg size in this species. As both egg size and reproductive success vary with age in the lesser snow goose we controlled for the effects of female age. Egg-size variation is very marked in this population, varying by up to 52% for eggs hatching successfully. However, there was no relationship between egg size and post-hatching survival of goslings to fledging or recruitment, either within or between broods, pooling across years. Egg size varied significantly between successful and unsuccessful clutches in only 2 of 33 individual year comparisons. First-laid eggs surviving to onset of incubation, and eggs hatching successfully, were on average larger than unsuccessful eggs, but this was probably due to the confounding effects of female age-specific and sequence-specific egg survival. Variance of egg size differed significantly between successful and unsuccessful eggs in only 3 of 24, and 0 of 21, individual year comparisons for pre- and post-hatching survival respectively. We therefore found little evidence for a relationship between egg-size variation and offspring fitness, or for strong directional, normalising or diversifying selection operating on egg size, in the lesser snow goose. In addition, there was only weak support for the hypothesis that egg-size variation is maintained by temporal variation in selection pressure (sensu Ankney and Bisset 1973). It is likely that egg-size variation represents the pleiotropic expression of alleles affecting more general physiological or metabolic processes. While this does not rule out the existence of alleles with more direct effects on egg size we suggest that their contribution to heritable egg size is small.  相似文献   

13.
The flooding-tolerant plant species Rumex palustris (Sm.) responds to complete submergence with stimulation of petiole elongation mediated by the gaseous hormone ethylene. We examined the involvement of auxin in petiole elongation. The manipulation of petiolar auxin levels by removing the leaf blade, or by addition of synthetic auxins or auxin transport inhibitors, led to the finding that auxin plays an important role in submergence-induced petiole elongation in R. palustris. A detailed kinetic analysis revealed a transient effect of removing the auxin source (leaf blade), explaining why earlier studies in which less frequent measurements were taken failed to identify any role for auxin in petiole elongation. We previously showed that the onset of stimulated petiole elongation depends on a more upright petiole angle being reached by means of hyponastic (upward) curvature, a differential growth process that is also regulated by ethylene and auxin. This raised the possibility that both ethylene and auxin stimulate elongation only indirectly by influencing hyponastic growth. We show here that the action of ethylene and auxin in promoting petiole elongation in submerged R. palustris is independent of the promoting effect that these hormones also exert on the hyponastic curvature of the same petiole.  相似文献   

14.
In a study on the mechanism of stimulated petiole elongation in submerged plants, oxygen concentrations in petioles of the flood-tolerant plant Rumex palustris were measured with micro-electrodes. Short-term submergence lowered petiole partial oxygen pressure to c . 19 kPa whereas prolonged submergence under continuous illumination depressed oxygen levels to c . 8–12 kPa after 24 h. Oxygen levels in petioles depended on the presence of the lamina, even in submerged conditions, and on available light. In darkness, petiole oxygen levels in submerged plants dropped quickly to values as low as 0.5–4 kPa. It is hypothesized that prolonged submergence in the light is accompanied by a decrease in carbon dioxide in the petiole. Submergence-enhanced petiolar elongation rate was compared with emergent plants. Peak daily elongation rates occurred at the end of the dark period in emergent plants, but in the middle of the light period in submerged plants. We suggest that this shift in daily elongation pattern is induced by dependence of growth on photosynthetically derived oxygen in submerged plants. Implications of reduced oxygen for ethylene production are raised. Levels of 1- aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase and ethylene sensitivity are cited as potential factors in hypoxia-induced ethylene release.  相似文献   

15.
In excised Zea maus L. coleoptiles incubated in aerated media at high fresh weight per volume ratios, indole-3-acetic acid induces transient drops of extracellular pH. Based on the quantitative dependency of the response on the initial auxin concentration we developed a novel auxin bioassay, which allows reliable estimation of IAA concentrations between 10−85 and 10−5M. Using the bioassay and complementary concentration measurements by IAA fluorescence we found the transient IAA-induced pH response paralleled by a decrease of auxin activity and concentration in the medium. This decline is rapid and starts immediately upon auxin addition, and insofar differs from the well known IAA degradation by epiphytic bacteria in long-term auxin tests. We conclude that the transient character of the auxin pH response is due to rapid IAA metabolism. The effect occurs under those experimental conditions that are necessary for reliable estimations of auxin-induced shifts of cell wall pH, which considerably complicates the interpretation of the results.  相似文献   

16.
Nutrient hot spots in the soil have a limited life span, but the costs and benefits for root foraging are still underexposed. We assessed short-term costs that may arise when a nutrient-rich patch induces root proliferation, but then rapidly disappears. Rumex palustris plants were grown with a homogeneous or a heterogeneous nutrient application. After root proliferation in a nutrient-rich patch, nutrient supply was switched from homogeneous to heterogeneous, and vice versa, or the patch location was changed. R. palustris proliferated its roots in the rich patch. After switching, the relative growth rates of the roots were adjusted to the novel pattern of nutrient availability. However, the changes in local root biomass lagged behind the rapid shift in nutrient supply, because the root mass realized in specific sectors could not be rapidly relocated. Despite this, R. palustris did not exhibit costs of switching in terms of biomass or nitrogen uptake. Our data suggest that rapid shifts in uptake rate and redistribution of nitrogen within the plant may have lowered the costs of incorrect root placement.  相似文献   

17.
Rumex palustris responds to total submergence by increasing the elongation rate of young petioles. This favours survival by shortening the duration of submergence. Underwater elongation is stimulated by ethylene entrapped within the plant by surrounding water. However, abnormally fast extension rates were found to be maintained even when leaf tips emerged above the floodwater. This fast post-submergence growth was linked to a promotion of ethylene production that is presumed to compensate for losses brought about by ventilation. Three sources of ACC contributed to post-submergence ethylene production in R. palustris: (i) ACC that had accumulated in the roots during submergence and was transported in xylem sap to the shoot when stomata re-opened and transpiration resumed, (ii) ACC that had accumulated in the shoot during the preceding period of submergence and (iii) ACC produced de novo in the shoot following de-submergence. This new production of ethylene was associated with increased expression of an ACC synthase gene (RP-ACS1) and an ACC oxidase gene (RP-ACO1), increased ACC synthase activity and a doubling of ACC oxidase activity, measured in vitro. Out of seven species of Rumex examined, a de-submergence upsurge in ethylene production was seen only in shoots of those that had the ability to elongate fast when submerged.  相似文献   

18.
Genetic divergence between population samples ofOrchis laxiflora and ofO. palustris from various European locations was studied by electrophoretic analysis of 25 enzyme loci. An average genetic distance of DNei = 1.24 was found between the two taxa, with 12 out of 25 loci showing alternative alleles (diagnostic loci). Genetic heterogeneity was observed within bothO. laxiflora andO. palustris, when northern and southeastern populations were compared, being lower in the former taxon (D = 0.06), than in the latter (D = 0.16). Karyologically, 2n = 36 was found for bothO. laxiflora andO. palustris. O. laxiflora andO. palustris produce hybrids, described asO. ×intermedia. Genotype analysis of several sympatric samples showed the presence of hybrid zones, including F1 hybrids and, in low proportions, recombinant classes, putatively assigned to Fn and backcrosses, as well as a few introgressed individuals of both taxa. These data indicate that hybrids are only partially fertile, with a very limited mixing up of the two parental gene pools; this is also shown by the lack of significant lowering of genetic distances when sympatric and allopatric heterospecific samples are compared. Accordingly,O. laxiflora andO. palustris form a syngameon; nevertheless they can be considered as good taxonomic species, with virtually distinct gene pools, which evolve independently. The genetic variability inO. laxiflora andO. palustris is remarkably low ( e = 0.05 and e = 0.02, respectively). In particular, nearly complete absence of polymorphic loci was found inO. palustris from northcentral Europe. Two hypotheses are considered to explain the low genetic variability of this endangered species.  相似文献   

19.
HUA2 caused natural variation in shoot morphology of A. thaliana   总被引:1,自引:0,他引:1  
Differences in life-history strategy are thought to contribute to adaptation to specific environmental conditions. Among life-history traits in plants, flowering time and shoot morphology are particularly important for reproductive success. Even though flowering time and shoot morphology are linked, the evolutionary changes in the genetic circuitry that simultaneously affects both traits remain obscure. Here, we have identified changes in a putative pre-mRNA processing factor, HUA2, as being responsible for the distinct shoot morphology and flowering behavior in Sy-0, a natural strain of Arabidopsis. HUA2 has previously been shown to positively regulate two MADS box genes affecting flowering time (FLOWERING LOCUS C [FLC]) and floral patterning (AGAMOUS [AG]) [1, 2]. We demonstrate that natural changes in HUA2 activity have opposite effects on its known functions, thus having implications for the coordinate control of induction and maintenance of floral fate. The changes in Sy-0 lead to enhanced FLC expression, resulting in an enlarged basal rosette and aerial rosettes, whereas suppression of AG function favors a reversion of floral meristems from determinate to indeterminate development. Natural variation in HUA2 activity thus coordinates changes in two important life-history traits, flowering time and shoot morphology.  相似文献   

20.
Plants may experience different environmental cues throughout their development which interact in determining their phenotype. This paper tests the hypothesis that environmental conditions experienced early during ontogeny affect the phenotypic response to subsequent environmental cues. This hypothesis was tested by exposing different accessions of Rumex palustris to different light and nutrient conditions, followed by subsequent complete submergence. Final leaf length and submergence-induced plasticity were affected by the environmental conditions experienced at early developmental stages. In developmentally older leaves, submergence-induced elongation was lower in plants previously subjected to high-light conditions. Submergence-induced elongation of developmentally younger leaves, however, was larger when pregrown in high light. High-light and low-nutrient conditions led to an increase of nonstructural carbohydrates in the plants. There was a positive correlation between submergence-induced leaf elongation and carbohydrate concentration and content in roots and shoots, but not with root and shoot biomass before submergence. These results show that conditions experienced by young plants modulate the responses to subsequent environmental conditions, in both magnitude and direction. Internal resource status interacts with cues perceived at different developmental stages in determining plastic responses to the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号