首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of key enzymes of n-alkane metabolism was determined in cells of Rhodococcus erythropolis EK-1, a surfactant producer grown on n-hexadecane. Potassium cations were found to inhibit alkane hydroxylase and NADP+-dependent aldehyde dehydrogenase, while sodium cations were found to activate these enzymes. Decreased potassium concentration (to 1 mM), increased sodium concentration (to 35 mM), and addition of 36 μmol/l Fe(II), required for alkane hydroxylase activity, resulted in increased activity of the enzymes of n-hexadecane metabolism and in a fourfold increase of surfactant synthesis. A 1.5–1.7-fold increase in surfactant concentration after addition of 0.2% fumarate (gluconeogenesis precursor) and 0.1% citrate (lipid synthesis regulator) to the medium with n-hexadecane results from enhanced synthesis of trehalose mycolates, as evidenced by a 3–5-fold increase in phosphoenolpyruvate synthetase and trehalose phosphate synthase, respectively.  相似文献   

2.
In Arabidopsis, genes encoding functional enzymes for the synthesis and degradation of trehalose have been detected recently. In this study we analyzed how trehalose affects the metabolism and development of Arabidopsis seedlings. Exogenously applied trehalose (25 mM) strongly reduced the elongation of the roots and, concomitantly, induced a strong accumulation of starch in the shoots, whereas the contents of soluble sugars were not increased. When Arabidopsis seedlings were grown on trehalose plus sucrose (Suc), root elongation was restored, but starch still accumulated to a much larger extent than during growth on Suc alone. The accumulation of starch in the shoots of trehalose-treated seedlings was accompanied by an increased activity of ADP-glucose pyrophosphorylase and an induction of the expression of the ADP-glucose pyrophosphorylase gene, ApL3. Even in the presence of 50 mM Suc, which itself also slightly induced ApL3, trehalose (5 mM) led to a further increase in ApL3 expression. These results suggest that trehalose interferes with carbon allocation to the sink tissues by inducing starch synthesis in the source tissues. Furthermore, trehalose induced the expression of the beta-amylase gene, AT-beta-Amy, in combination with Suc but not when trehalose was supplied alone, indicating that trehalose can modulate sugar-mediated gene expression.  相似文献   

3.
Some aspects of the induction of enzymes participating in the metabolism of phenol and resorcinol in Trichosporon cutaneum were studied using intact cells and cell-free preparations.Activities of phenol hydroxylase (1.14.13.7), catechol 1,2-oxygenase (1.13.11.1), cis,cis-muconate cyclase (5.5.1.-), delactonizing enzyme(s) and maleolylacetate reductase were 50–400 times higher in fully induced cells than in noninduced cells.In addition to phenol and resorcinol, also catechol, cresols and fluorophenols could induce phenol hydroxylase.The induction was severely inhibited by phenol concentrations higher than 1 mM. Using optimum inducer concentrations (0.01–0.10 mM), it took more than 8 h to obtain full induction, whether in proliferating or in nonproliferating cells.Phenol hydroxylase, catechol 1,2-oxygenase and cis,cis-muconate cyclase were induced simultaneously. The synthesis of the de-lactonizing activity was delayed in relation to these three preceeding enzymes of the pathway.High glucose concentration (over 15 mM) inhibited completely the induction of phenol oxidation by nonproliferating cells. It also inhibited phenol oxidation by pre-induced cells.Among the NADPH-generating enzymes, the activity of iso-citrate dehydrogenase was elevated in cells grown on phenol and resorcinol instead of glucose.  相似文献   

4.
Metabolic regulation of the trehalose content of vegetative yeast.   总被引:6,自引:0,他引:6  
We have investigated the mechanism by which heat shock conditions lead to a reversible accumulation of trehalose in growing yeast. When cells of S. cerevisiae M1 growing exponentially at 30 degrees C were shifted to 45 degrees C for 20 min, or to 39 degrees C for 40 min, the concentration of trehalose increased by about 25-fold; an effect reversed upon lowering the temperature to 30 degrees C. This was compared to the more than 50-fold rise in trehalose levels obtained upon transition from the exponential to the stationary growth phase. Whereas the latter was paralleled by a 12-fold increase in the activity of trehalose-6-phosphate synthase, no significant change in the activities of trehalose-synthesizing and -degrading enzymes was measured under heat shock conditions. Accordingly, cycloheximide did not prevent the heat-induced accumulation of trehalose. However, the concentrations of the substrates for trehalose-6-phosphate synthase, i.e. glucose-6-phosphate and UDP-glucose, were found to rise during heat shock by about 5-10-fold. Since the elevated levels of both sugars are still well below the Km-values determined for trehalose-6-phosphate synthase in vitro, they are likely to contribute to the increase in trehalose under heat shock conditions. A similar increase in the steady-state levels was obtained for other intermediates of the glycolytic pathway between glucose and triosephosphate, including ATP. This suggests that temperature-dependent changes in the kinetic parameters of glycolytic enzymes vary in steady-state levels of intermediates of sugar metabolism, including an increase of those that are required for trehalose synthesis. Trehalose, glucose-6-phosphate, UDP-glucose, and ATP, were all found to increase during the 40 min heat treatment at 39 degrees C. Since this also occurs in a mutant lacking the heat shock-induced protein HSP104 (delta hsp104), this protein cannot be involved in the accumulation of trehalose under these heat shock conditions. However, mutant delta hsp104, in contrast to the parental wild-type, was sensitive towards a 20 min incubation at 50 degrees C. Since this mutant also accumulated normal levels of trehalose, we conclude that HSP104 function, and not towards a 20 min incubation at 50 degrees C. Since this mutant also accumulated normal levels of trehalose, we conclude that HSP104 function, and not the accumulation of trehalose, protects S. cerevisiae from the damage caused by a 50 degrees C treatment.  相似文献   

5.
An in vitro bioassay suitable for routine use to investigate hypertrehalosemic hormone (HTH)-dependent trehalose biosynthesis was developed for the cockroach fat body. Blaberus discoidalis fat bodies were isolated and divided so that eight matched pieces from a single tissue could be compared for multiple control and experimental treatments. Optimum incubation conditions and the properties of HTH-dependent trehalose synthesis were determined. Dose-response studies determined an EC50 of 0.044 nM HTH for male fat body and 0.16 nM HTH for female tissue. HTH increased trehalose production by male fat body 3-fold compared to only a 67% maximum increase by the female tissue, and only the male tissue was used in subsequent studies. Fat body required only 5-min exposure to HTH for maximum trehalose production for 1 h. Trehalose synthesis was inhibited by ≥ 15 mM trehalose in the incubation medium. The fat body showed a developmental increase in trehalose synthesis in vitro that was reflected by hemolymph trehalose in vivo. Basal and HTH-related trehalose synthesis were low between days 0 and 10, increased 3-fold by day 20, and were high thereafter. These studies have established baseline data for future investigations to identify the signal transduction mechanisms involved in HTH regulation of fat body metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The effects of magnesium and sodium ions on adenylate cyclase activity in plasma membranes from chicken heart and eggshell gland mucosa were studied. It was found that the increase in magnesium chloride concentration from 5 to 40 mM results in the stimulation (4.1-fold) of the adenylate cyclase activity. The increase in sodium chloride concentration up to 150 mM stimulated the enzyme activity 2-fold. The stimulation of adenylate cyclase by magnesium and sodium ions was less pronounced in the eggshell gland. GTP did not activate adenylate cyclase. The activating effect of magnesium and sodium ions was accompanied by the attenuation of the enzyme sensitivity to NaF, guanylyl imidodiphosphate and isoproterenol. Activation by guanylyl imidodiphosphate was completely abolished in the presence of 40 mM magnesium chloride. It is assumed that high concentrations of the salt promote subunit dissociation of the adenylate cyclase regulatory protein and its interaction with the catalytic subunit in the presence of endogenous nucleotides. The differences in the adenylate cyclase sensitivity to cations in chicken heart and eggshell gland mucosa correlate with the amount of pertussis toxin substrate.  相似文献   

7.
Heat-shock response is highly conserved in animals and microorganisms, and it results in the synthesis of heat-shock proteins. In yeast, heat-shock response has also been reported to induce trehalose accumulation. We explored the relationship between heat- (35 C) or cold-shock (1 and 10 C) and trehalose metabolism in the entomopathogenic nematode, Heterorhabditis bacteriophora. Because both heat- and cold-shocks may precede desiccation stress in natural soil environments, we hypothesized that nematodes may accumulate a general desiccation protectant, trehalose, under both situations. Indeed, both heat- and cold-shocks influenced trehalose accumulation and activities of enzymes of trehalose metabolism in H. bacteriophora. Trehalose increased by 5- and 6-fold in heat- and cold-shocked infective juveniles, respectively, within 3 hr of exposure, compared with the nematodes maintained at 25 C (culture temperature). The activity of trehalose-6-phosphate synthase (T6PS), an enzyme involved in the synthesis of trehalose, also significantly increased in both heat- and cold-shocked nematodes during the first 3 hr of exposure. Generally, the trehalose levels and activities of T6PS declined to their original levels within 3 hr when nematodes were transferred back to 25 C. In both heat- and cold-shocked nematodes, trehalase activity decreased significantly within the first 3 hr and generally returned to the original levels within 3 hr when these nematodes were transferred back to 25 C. The results demonstrate that the trehalose concentrations in H. bacteriophora are influenced by both heat- and cold-shocks and are regulated by the action of 2 trehalose-metabolizing enzymes, T6PS and trehalase. The accumulated trehalose may enhance survival of nematodes under both cold and warm conditions, but it may also provide simultaneous protection against desiccation that may result from subsequent evaporation or freezing. This is the first report of the relationship between trehalose metabolism and heat-shock for the Nematoda.  相似文献   

8.
9.
The stability of a cationic peroxidase isolated and purified from a cell suspension of Vaccinium myrtillus, microencapsulated in reverse micelles of sodium dioctylsulfosuccinate (AOT) was evaluated. By using a central composite design (CCD), some relevant parameters for the enzymatic activity, such as surfactant and water concentration, pH and buffer molarity, were analysed. The response surface curves showed that 50 mM AOT, 500 mM water, 80 mM buffer and pH 7.6 were the best conditions for enzyme stability. The effect of carbohydrates and polyols on enzyme stability was also evaluated. At 20 mM, carbohydrates like arabinose, and trehalose increased the enzymatic stability by a factor of 4.4 and 2.3, respectively, but melezitose had no effect. From the three polyols tested, inositol and sorbitol increased the peroxidase stability by a factor of 3.8 and 1.8, respectively, while mannitol had no effect.  相似文献   

10.
The stability of a cationic peroxidase isolated and purified from a cell suspension of Vaccinium myrtillus , microencapsulated in reverse micelles of sodium dioctylsulfosuccinate (AOT) was evaluated. By using a central composite design (CCD), some relevant parameters for the enzymatic activity, such as surfactant and water concentration, pH and buffer molarity, were analysed. The response surface curves showed that 50 mM AOT, 500 mM water, 80 mM buffer and pH 7.6 were the best conditions for enzyme stability. The effect of carbohydrates and polyols on enzyme stability was also evaluated. At 20 mM, carbohydrates like arabinose, and trehalose increased the enzymatic stability by a factor of 4.4 and 2.3, respectively, but melezitose had no effect. From the three polyols tested, inositol and sorbitol increased the peroxidase stability by a factor of 3.8 and 1.8, respectively, while mannitol had no effect.  相似文献   

11.
松针瘿蚊越冬幼虫体内酶活性的时序变化   总被引:2,自引:0,他引:2  
李毅平  龚和  朴镐用 《昆虫学报》2000,43(3):227-232
昆虫的越冬耐寒过程与糖酵解、磷酸己糖途径和抗冻保护性物质合成等一些中间代谢有关的酶有关。该文对松针瘿蚊Thecodiplosis japonensis老熟幼虫1998/1999越冬期间体内上述代谢酶活性的变化进行了研究。越冬期间体内糖原磷酸化酶活性明显地增加,糖酵解有关的酶(己糖激酶、乳酸脱氢酶和醛缩酶)活性较低,以保证更多的碳源(糖原)转化成海藻糖。越冬期间,体内葡萄糖-6-磷酸脱氢酶活性增高所产生的还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH),可为细胞在亚低温状态下发挥正常功能以及体内抗冻保护性物质的合成提供还原动力,同时通过调节体内海藻糖酶活性来维持越冬期间较高含量的海藻糖和移除春季体内累积的过多的海藻糖。  相似文献   

12.
A metabolic engineering strategy was successfully applied to engineer the UDP-glucose synthesis pathway in E. coli. Two key enzymes of the pathway, phosphoglucomutase and UDP-glucose pyrophosphorylase, were overexpressed to increase the carbon flux toward UDP-glucose synthesis. When additional enzymes (a UDP-galactose epimerase and a galactosyltransferease) were introduced to the engineered strain, the increased flux to UDP-glucose synthesis led to an enhanced UDP-galactose derived disaccharide synthesis. Specifically, close to 20 mM UDP-galactose derived disaccharides were synthesized in the engineered strain, whereas in the control strain only 2.5 mM products were obtained, indicating that the metabolic engineering strategy was successful in channeling carbon flux (8-fold more) into the UDP-glucose synthesis pathway. UDP-sugar synthesis and oligosaccharide synthesis were shown to increase according to the enzyme expression levels when inducer concentration was between 0 and 0.5 mM. However, this dependence on the enzyme expression stopped when expression level was further increased (IPTG concentration was increased from 0.5 to 1 mM), indicating that other factors emerged as bottlenecks of the synthesis. Several likely bottlenecks and possible engineering strategies to further improve the synthesis are discussed.  相似文献   

13.
Transition of n-hexadecane utilizing cultures of Candida maltosa to oxygen-limited growth caused an up to 6-fold increase of the cellular cytochrome P-450 content. Enhanced cytochrome P-450 formation required protein de novo synthesis and was not due to a change of the apo/holo-enzyme ratio as demonstrated by cycloheximide inhibition and immunological quantitation. The effect of low oxygen concentration (pO2=3–5%) was simulated by selective inhibition of alkane hydroxylation with carbon monoxide (at a pO2 of 70–75%). Enhanced cytochrome P-450 formation occurred even when a constant growth rate was maintained through utilization of a second non-repressive growth substrate. However, the presence of n-alkanes was an essential precondition. It was concluded, that the cytochrome P-450 formation was mainly regulated by the intracellular inducer concentration which depends on the relative rates of alkane transport into the cell and the actual alkane hydroxylating activity of the enzyme system.Abbreviation cyt cytochrome  相似文献   

14.
Using EDTA and proteolytic enzymes to suppress hydrocarbon solubilization, direct evidence is presented in support of the mechanism of liquid hydrocarbon uptake by microbial cells predominantly from the solubilized or accommodated substrate. EDTA (2-5mM) strongly inhibited growth of three yeast species and one bacterial species on n-hexadecane and the inhibition was removed by surfactant-emulsified and surfactant-solubilized alkane and also by excess addition of Ca(2+). EDTA had no inhibitory effect on the growth of the organisms on soluble substrates such as sodium acetate and nutrient broth or on n-pentane, a volatile alkane which was primarily transported by diffusion from gas phase. EDTA was shown to have no significant effect on the adsorption of cells on alkane drops. EDTA inhibition of growth was considered to be due to suppression of alkane solubilization, brought about by the solubilizing factor(s) produced by cells. It was shown that this chelating agent did not inhibit the growth of yeast on solubilized alkane but strongly inhibited its growth on alkane drops. It was demonstrated that adherent capacity of microbial cell to oil phase was closely related to the state of hydrocarbon emulsification and had no relationship to the ability of organisms to grow on hydrocarbon. Certain proteolytic enzymes inhibited the growth of yeast on alkane, presumably by digesting the alkane solubilizing protein, but not on glucose, and the inhibition was removed by a supply of surfactant-emulsified and surfactant-solubilized alkane. Specific solubilization of various hydrocarbon types during growth of the prokaryotic bacterial strain was demonstrated. The specific solubilization of hydrocarbon was strongly inhibited strain was demonstrated. The specific solubilization of hydrocarbon was strongly inhibited by EDTA, and the inhibition was removed by excess Ca(2+). It was concluded that specific solubilization of hydrocarbons is an important mechanism in the microbial uptake of hydrocarbons.  相似文献   

15.
Human thrombopoietin (hTPO) is a heavily glycosylated protein with 6 and 24 potential N- and O-glycosylation sites, respectively. To determine the effect of sodium butyrate (NaBu) on the production and quality of hTPO in recombinant Chinese hamster ovary (rCHO) cells, NaBu (0-10 mM) was added to the cultures of exponentially growing cells. NaBu addition significantly increased both the specific and volumetric hTPO production, although it decreased the cell viability by apoptosis in a dose-dependent manner. The highest hTPO concentration of 82.2 +/- 5.6 microgml-1 was obtained in the culture with 3 mM NaBu addition. Compared with the culture without NaBu addition, the culture with 3 mM NaBu resulted in a 6.4-fold increase in qTPO and a 3.3-fold increase in the final hTPO concentration on day 7. However, NaBu deteriorated the quality of hTPO, resulting from increased heterogeneity, reduced acidic hTPO isoforms, reduced alpha(2 --> 3) sialylation, and decreased in vivo biological activity. We also found that the biological activity of hTPO in the culture with 3 mM NaBu addition collected on day 7 was 72% of that in the culture without NaBu addition. Taken together, the use of NaBu or its optimal concentration for high-level expression of a heavily glycosylated protein like hTPO should be determined by considering its detrimental effect on the quality of glycoprotein.  相似文献   

16.
A purification of up to 4000-fold is reported for lysyl hydroxylase (EC 1.14.11.4) from extract of chick-embryo homogenate and one of about 300-fold from extract of chick-embryo cartilage. Multiple forms of the enzyme were observed during purification from whole chick embryos. In gel filtration the elution positions of the two main forms corresponded to average molecular weights of about 580000 and 220000. These two forms could also be clearly separated in hydroxyapatite chromatography. In addition, some enzyme activity was always eluted between the two main peaks both in gel filtration and in hydroxyapatite chromatography. The presence of the two main forms was also observed when purifying enzyme from chick embryo cartilage. Both forms of the enzyme hydroxylated lysine in arginine-rich histone, which does not contain any -X-Lys-Gly- sequence. No difference was found between the enzyme from whole chick embryos and from chick embryo cartilage in this respect. Lysyl hydroxylase was found to have affinity for concanavalin A, indicating the presence of some carbohydrate residues in the enzyme molecule. Lysyl and prolyl hydroxylase activities increased when the chick embryo homogenate was assayed in the presence of lysolecithin. Preincubation of the homogenate either with lysolecithin or with Triton X-100 increased lysyl hydroxylase activity in homogenate, and in the 1500 x g and 150000 x g supernatants, suggesting that the increase in the enzyme activity was due to liberation of the enzyme from the membranes. Divalent cations were found to inhibit the activity of lysyl and prolyl hydroxylases in vitro. An inhibition of about 50% was achieved with 15 mM calcium 60 muM copper and 3 muM zinc concentrations. The mode of inhibition was tested with Cu2+, and was found to be competitive with Fe2+.  相似文献   

17.
Changes in the concentrations of free amino acids and specific organic acids were analysed during the induction of drought stress in Brassica napus . Most of the amino acids showed a characteristic linear increase with the induction of drought stress in Brassica leaves, increasing an average of 5.9-fold over control levels, followed by a reduction in concentration upon rehydration of the plants. Pyruvate concentrations doubled after 4 days of drought stress whereas 2-oxoglutarate concentrations remained relatively constant. The activities of two of the enzymes involved in amino acid biosynthesis, alanine aminotransferase (EC 2.6.1.2) and aspartate aminotransferase (EC 2.6.1.1), were also measured. Neither enzyme showed any increase in activity, except when the plants were rehydrated. This suggests that the increase in both alanine and aspartate levels results from the increase in their precursors pyruvate and glutamate and may not require increased enzyme activity. The effect of drought stress upon changes in protein synthesis was analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We found that there was an overall decrease in protein synthesis with the induction of drought stress, followed by a resumption of synthesis upon rehydration. In addition, the synthesis of a number of specific polypeptides was found to decrease upon water loss in the leaves.  相似文献   

18.
Significant amounts of phospholipid N-methyltransferase activity in murine thymocytes were found to be distributed on the plasma membrane. The enzyme activity had an optimum pH of 9. The presence of divalent cations, Mg2+ (10 mM) or Ca2+ (1 mM), and EGTA separately in the assay had only a small effect on the enzyme activity. However, addition of both 10 mM Mg2+ and 1 mM Ca2+ increased the enzyme activity. The presence of two enzymes for each conversion of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PME) and PME to phosphatidylcholine (PC) was suggested by the result of the determination of the incorporated radioactivity into PME, phosphatidyldimethylethanolamine (PDE) and PC; the apparent Km values for S-adenosyl-L-methionine were 20 and 400-500 microM for the conversion of PE to PME and for the conversion of PME to PC they were 5 microM and 40 microM. S-Adenosyl-L-homocysteine (AdoHcy), a known inhibitor of enzymatic methylation, competitively inhibited [14C]methyl incorporation into total lipid. The apparent Ki value for AdoHcy was 44.7 microM. Two phospholipid N-methyltransferases were partially purified by extraction with sodium deoxycholate, gel filtration on Sephadex G-75, and affinity column chromatography on AdoHcy-Sepharose. One enzyme, mainly catalyzing the formation of PME, was purified approximately 1548-fold and the other catalyzing the formation of PDE and PC, was purified approximately 629- to 703-fold. However, the former still contained a little activity for PDE and PC formation and the latter contained a little activity for PME formation. In these partially purified phospholipid N-methyltransferase preparations, little contaminating protein O-carboxylmethyltransferase activity was observed; however, significant PC-phospholipase A2 activity was detected. This result may suggest that phospholipid N-methyltransferases associate with phospholipase A2 in the thymocyte plasma membrane.  相似文献   

19.
S L Dresler 《Biochemistry》1985,24(24):6861-6869
The effect of pretreatment with sodium butyrate on DNA excision repair was studied in intact and permeable confluent (i.e., growth-inhibited) diploid human fibroblasts. Exposure to 20 mM sodium butyrate for 48 h increased subsequent ultraviolet (UV)-induced [methyl-3H]thymidine incorporation by intact AG1518 fibroblasts by 1.8-fold and by intact IMR-90 fibroblasts by 1.2-1.3-fold. UV-induced incorporation of deoxy[5-3H]cytidine, deoxy[6-3H]cytidine, and deoxy[6-3H]uridine, however, showed lesser degrees of either stimulation or inhibition in butyrate-pretreated cells. This result suggested that measurements of butyrate's effect on DNA repair synthesis in intact cells are confounded by simultaneous changes in nucleotide metabolism. The effect of butyrate on excision repair was also studied in permeable human fibroblasts in which excision repair is dependent on exogenous nucleotides. Butyrate pretreatment stimulated UV-induced repair synthesis by 1.3-1.7-fold in permeable AG1518 cells and by 1.5-2-fold in permeable IMR-90 cells. This stimulation of repair synthesis was not due to changes in repair patch size or composition or in the efficiency of DNA damage production but rather resulted from a butyrate-induced increase in the rate of damage-specific incision of DNA. The increased rate of incision in butyrate-pretreated cells could be due either to increased levels of enzymes mediating steps in excision repair at or before incision or to alterations in chromatin structure making damage sites in DNA more accessible to repair enzymes.  相似文献   

20.
Preface     
The vector of Chagas' disease, Rhodnius prolixus, feeds exclusively on blood. The blood meals are slowly digested, and these insects wait some weeks before the next meal. During the life of an insect, energy‐requiring processes such as moulting, adult gonadal and reproductive growth, vitellogenesis, muscular activity, and fasting, lead to increased metabolism. Carbohydrates are a major source of energy and their mobilization is important. We determined the amounts of glycogen, trehalose, and glucose present in the fat body and/or hemolymph of adult males of R. prolixus and recorded the processes of accumulation and mobilization of these carbohydrates. We also tested our hypothesis that these processes are under endocrine control. The amount of glycogen in the fat body progressively increased until the fourth day after feeding (from 9.3±2.2 to 77. 3±7.5 µg/fat body), then declined to values around 36.3±4.9 µg/fat body on the fifteenth day after the blood meal. Glycogen synthesis was eliminated in decapitated insects and head‐transplanted insects synthesized glycogen. The amount of trehalose in the fat body increased until the sixth day after feeding (from 16. 6±1.7 to 40. 6±5.3 nmol/fat body), decreased abruptly, and stabilized between days 7 and 15 at values ranging around 15–19 nmol/fat body. Decapitated insects did not synthesize trehalose after feeding, and this effect was reversed in head‐transplanted insects. The concentration of trehalose in the hemolymph increased after the blood meal until the third day (from 0.07±0.01 to 0.75±0.05 mM) and at the fourth day it decreased until the ninth day (0.21±0.01 mM), when it increased again until the fourteenth day (0.79±0.06 mM) after the blood meal, and then declined again. In decapitated insects, trehalose concentrations did not increase soon after the blood meal and at the third day it was very low, but on the fourteenth day it was close to the control values. The concentration of glucose in the hemolymph of untreated insects remained low and constant (0.18±0.01 mM) during the 15 days after feeding, but in decapitated insects it progressively increased until the fifteenth day (2.00±0.10 mM). We recorded the highest trehalase activity in midgut, which was maximal at the eighth day after feeding (2,830±320 nmol of glucose/organ/h). We infer that in Rhodnius prolixus, the metabolism of glycogen, glucose, and trehalose are controlled by factors from the brain, according to physiological demands at different days after the blood meal. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号