首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Flavinogenic yeast overproduce riboflavin (RF) in iron-deprived media. In optimal growth media supplemented with Fe, hexavalent chromium 'Cr (VI)' treatment led to elevated RF synthesis in all cases of 37 flavinogenic strains studied. The level of RF production exceeded the rate observed at iron-deficient conditions. At sublethal Cr concentrations the RF oversynthesis over time correlated well with the growth-inhibitory adaptational period as manifested by the prolonged lag phase. The consecutive logarithmic biomass growth was accompanied by a drop in RF biosynthesis. Cr (VI)-induced RF overproduction was not a result of cellular iron level decrease. The treatment of yeast with Cr (VI) led to the stimulation of GTP-cyclohydrolase and RF-synthase activities, the key enzymes of the RF biosynthesis pathway.  相似文献   

4.
Pichia guilliermondii is a representative of a yeast species, all of which over-synthesize riboflavin in response to iron deprivation. Molecular genetic studies in this yeast species have been hampered by a lack of strain-specific tools for gene manipulation. Stable P. guilliermondii ura3 mutants were selected on the basis of 5'-fluoroorotic acid resistance. Plasmid carrying Saccharomyces cerevisiae URA3 gene transformed the mutant strains to prototrophy with a low efficiency. Substitution of a single leucine codon CUG by another leucine codon CUC in the URA3 gene increased the efficiency of transformation 100 fold. Deletion cassettes for the RIB1 and RIB7 genes, coding for GTP cyclohydrolase and riboflavin synthase, respectively, were constructed using the modified URA3 gene and subsequently introduced into a P. guilliermondii ura3 strain. Site-specific integrants were identified by selection for the Rib(-) Ura(+) phenotype and confirmed by PCR analysis. Transformation of the P. guilliermondii ura3 strain was performed using electroporation, spheroplasting or lithium acetate treatment. Only the lithium acetate transformation procedure provided selection of uracil prototrophic, riboflavin deficient recombinant strains. Depending on the type of cassette, efficiency of site-specific integration was 0.1% and 3-12% in the case of the RIB1 and RIB7 genes, respectively. We suggest that the presence of the ARS element adjacent to the 3' end of the RIB1 gene significantly reduced the frequency of homologous recombination. Efficient gene deletion in P. guilliermondii can be achieved using the modified URA3 gene of S. cerevisiae flanked by 0.8-0.9 kb sequences homologous to the target gene.  相似文献   

5.
The effect of oxidative stress on riboflavin (vitamin B2) biosynthesis and iron accumulation in flavinogenic yeast P. guilliermondii was investigated. Treatment of P. guilliermondii cells with superoxidgenerating agent methylviologen leads to elevated production of malondialdyhyd (MDA) which reflects the overall cellular oxidation state. Increased iron content in the cells and enhanced productivity of flavinogenesis under these conditions has been shown too. Significant increasing of MDA and riboflavin production by yeast cells under iron deficiency was observed. Riboflavin overproducing P. guilliermondii mutant strains rib80, rib81 and hit, possess high iron transport and synthesize increased quantity of MDA. The role of riboflavin overproduction and activation of iron assimilation in the P. guilliermondii antioxidant defence is discussed.  相似文献   

6.
Riboflavin kinase (E.C.2.7.1.26) was isolated from the cells of the yeast Pichia guilliermondii. The enzyme was 680-fold purified uzing ammonium sulphate fractionation, chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50 and gel-filtration through Sephadex G-75. Purified enzyme preparation was free from phosphatases and FAD-synthetase. The pH optimum was 8,7, the temperature optimum-45 degrees C. The enzyme was activated by Zn2+, Mg2+ and Co2+ ions. Km for riboflavin was 1,0x10(-5) M, for ATP -- 6,7X10(-6) M. Riboflavin kinase catalyzed the phosphorylation of riboflavin analogues with the substitution of methyl groups at positions 7 and 8. UTP, GTP, ADP and CTP, besides ATP, were phosphate donors. AMP inhibited the enzyme activity. Molecular weight of the enzyme was 28000, as estimated by gel-filtration through Sephadex G-150. Purified riboflavin kinase was stable under storage.  相似文献   

7.
The interaction of purified riboflavin kinase (EC 2.7.1.26) from Pichia guilliermondii with 44 structural vitamin B2 analogues is studied. The presence of D-ribityl lateral chain in an analogue structure is found to be necessary for the substrate activity. The substitution of CH3 groups in the 7 and 8 positions of isoalloxazine ring in the riboflavin molecule for CF3, Cl, H, NH2 and N(CH3)2 resulted in the decrease of the analogue affinity to riboflavin kinase as compared with the natural substrate, vitamin B2. The most efficient enzyme inhibitors of analogues without substrate properties turned to be trifluoromethylisoalloxazines, containing 2'-hydroxyethyl group at N10. The elongation of D-ribityl lateral chain, the elimination of change of CH3-groups in the 7 and 8 positions for CF3- Cl-, COOH-substitutors resulted in the decrease of the inhibitory effect of flavines. Modifications in the structure of isoalloxazine ring, etherification of OH-groups in the lateral D-ribityl chain, and the introduction of volume substitutors (N-piperidyl, D-ribitylamine, hydroxyethylamine) prevented the interaction of the analogue with riboflavin kinase. Flavin nucleotides (FMN and FAD) did not affect the rate of vitamin B2 phosphorylation.  相似文献   

8.
9.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction to flavinogenesis. It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation. 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-methyl-8-trifluoro-methyl-10-(beta-hydroxyethyl)izoalloxazine and galactoflavin exerted only a slight effect on this process. The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2'-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect. The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

10.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5-1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b2, whereas the hitl mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

11.
12.
Seven strains of Pichia guilliermondii (Candida guilliermondii, asexual state) from diverse isolation sources were examined for the production of xylitol and riboflavin in xylose-grown cultures. Under the conditions tested, all strains produced xylitol from xylose; conversion efficiencies varied, on a strain-specific basis, from 7% to 36% of the initial substrate. Four of seven strains metabolized xylitol immediately as xylose levels became depleted. The remaining three strains metabolized xylitol slowly and incompletely. Surprisingly, utilization of xylitol showed an apparent relationship with riboflavin production. Strains that readily metabolized xylitol produced at least threefold greater levels of riboflavin than did strains that used xylitol slowly. Moreover, riboflavin accumulation took place during xylitol consumption. P. guilliermondii strains that produced the highest levels of riboflavin on xylose produced significantly less riboflavin when grown on glucose or directly on xylitol. Received: 24 April 1996 / Received revision: 29 July 1996 / Accepted: 24 August 1996  相似文献   

13.
In wild-type cells and some riboflavin-deficient mutants of P. guilliermondii GTP is transformed to the ribitylated intermediates 2,5-diamino-6-hydroxy-4-ribitylaminopyrimidine and 5-amino-2,6-dihydroxy-4-ribitylaminopyrimidine of the riboflavin biosynthetic path. We were able to show that these compounds were formed in vitro as well as in permeabilized cells by reactions including a reductive conversion of the product of GTP cyclohydrolase II action upon GTP. In order to analyse the pyrimidine derivates, 6,7-dimethyl-8-ribitylpterin and 6,7-dimethyl-8-ribityllumazine were synthesized by reaction of pyrimidines with diacetyl. The formation of ribitylated pyrimidines was shown to be strictly dependent on the presence of NADPH2. The data obtained indicate that the reductive step is catalyzed by a 2,5-diamino-6-hydroxy-4-ribosylaminopyrimidine-reductase. 6,7-Dimethyl-8-ribitylpterin and 6,7-dimethyl-8-ribityllumazine isolated from the incubation mixtures have been identified by chromatography and by their ultraviolet and fluorescence spectra.  相似文献   

14.
Riboflavin kinase (ATP: riboflavin-5'-phosphotransferase, EC 2.7.1.26) from n-alkane utilizing Pichia guilliermondii yeast has been immobilized by covalent attachment to CNBr-activated agarose beads. The enzyme activity yield during immobilization reached 71.6%. Immobilized riboflavin kinase showed no significant changes in temperature and pH optima as well as in specificity of the action in relation to synthetic substrate analogues with the substitution of methyl groups at positions 7 and 8 of the isoalloxazine ring. Immobilized riboflavin kinase was stable during FMN synthesis in the continuous-flow packed column enzyme reactor with half-life of 27 days.  相似文献   

15.
Stenchuk NN  Kapustiak KE 《Genetika》2003,39(8):1026-1032
A method of positive selection of mutants with impaired regulation of flavinogenesis and metal homeostasis in yeast Pichia guilliermondii was developed. This positive selection system was based on the isolation of pseudo-wild-type revertants (the Rib+ phenotype) in riboflavin-dependent rib1-86 mutant (the Rib- phenotype) of yeast P. guilliermondii. Mutation rib1-86 blocks activity of the GTP cyclohydrolase II catalyzing the first step in riboflavin (RF) biosynthesis. Study of a collection of spontaneous Rib+ revertants allowed the identification of a considerably large number of genetic loci responsible for the suppression of rib1-86, which include both previously identified three loci (rib80, rib81, and hit1) and six new loci designated red1-red6 (reduction). A comparative analysis of the wild-type strain and red mutants revealed that these mutants had higher activity levels of GTP cyclohydrolase and RF-synthase, elevated levels of RF biosynthesis, enhanced Fe/Cu reductase activity and higher total iron content in cells and that they are characterized by enhanced sensitivity to transition metals (Fe(III), Cu(II), Cd(II), Co(II), Zn(II), Ag(I), and to H2O2. The metal hypersensitivity of mutant cells can be prevented by an increased amount of extracellular iron ions. Mutations red1 and red6 synergistically interact with the locus rib81 in the course of RF biosynthesis. Obviously, each RED gene plays an important role in the regulation of both flavinogenesis and metal homeostasis in P. guilliermondii cells.  相似文献   

16.
Genes involved in lipid accumulation were identified in Saccharomyces cerevisiae using transposon insertion mutagenesis. Five ORFs, such as SNF2, IRA2, PRE9, PHO90, and SPT21 were found from the analysis of the insertion sites in transposon insertion mutants with higher lipid content. Since these ORFs are not directly involved in storage lipid biosynthesis, we speculate that they are involved in carbon fluxes into storage lipids in response to nutrient conditions. Lipid analysis of disruptants of these ORFs indicated that the Deltasnf2, and Deltaira2 disruptants had significantly higher lipid content. Cultivation in a nitrogen-limited medium increased the lipid content in all disruptants, among which the Deltapre9 disruptant was the most sensitive to nitrogen limitation. We then focused on the Deltasnf2 disruptant due to its higher lipid content and its function as a regulator of phospholipid synthesis. Lipid class analysis indicated that triacylglycerol and free fatty acids contributed to the increase in total lipids of the Deltasnf2 disruptant. The addition of exogenous fatty acids was not so effective at increasing the lipid content in the Deltasnf2 disruptant as it was in the wild type. It should be noticed that exogenous free linoleic acid was much higher in the Deltasnf2 disruptant than in the wild type, as in the case of endogenous free fatty acids. In addition, the incorporation of exogenous fatty acids into cells increased in the disruptant, suggesting that fatty acid transporters were regulated by SNF2. The results suggest that metabolic fluxes into storage lipids, which are activated in the Deltasnf2 disruptant, is repressed by the incorporation of exogenous fatty acids. They provide new insight into the biosynthesis of storage lipids in yeast.  相似文献   

17.
The biosynthesis of riboflavin precursor 6,7-dimethyl-8-ribityllumazine was studied in extracts of Pichia guilliermondii yeast mutants of rib5 and rib6 genotypes with impaired synthesis of proteins P1 and P2, respectively. It was shown that synthesis of 6,7-dimethyl-8-ribityllumazine took place in extracts of rib5 mutant (active P1 protein) in the presence of 2,4-dihydroxy-5-amino-6-ribitylaminopyrimidine and the compound formed from ribose-5-phosphate by extracts of rib6 mutant (active P2 protein). No lumazine was formed in extracts of rib6 mutant from pyrimidine substrate and ribose-5-phosphate preincubated with extracts of rib5 mutant. Hence, P1 protein (the product of RIB5 gene) participates in the biosynthesis of 6,7-dimethyl-8-ribityllumazine from 2,4-dihydroxy-5-amino-6-ribitylaminopyrimidine and aliphatic intermediate which is formed from ribose-5-phosphate, under the action of P2 protein (the product of RIB6 gene).  相似文献   

18.
Riboflavin uptake by washed cells of riboflavin deficient mutant MS1-3 of Pichia guilliermondii yeast was strongly depressed by D-glucose, L-sorbose, alpha-methyl-D-glucoside, sucrose, trehalose, maltose and salicin but not by D-mannose, D-galactose, D-fructose or ribitol. Glucose decreased also the initial uptake rate of riboflavin analogue, 8-piperidyl-10-(1'-D-galactityl) isoalloxazine; the inhibition having a competitive character (Ki==5,7 mM). Apparently riboflavin permease is able to accept not only riboflavin and its analogues but also glucose and some of glucose derivates. Cells preloaded with riboflavin and transferred into riboflavin-free medium excreted vitamin B2 into the medium. This excretion was strongly stimulated by D-glucose, D-fructose, D-mannose but not by citrate or succinate. In contrast to riboflavin, 8-piperidyl-10-(1'-D-galactityl) isoalloxazine was not excreted into the medium even in the presence of glucose. The rate of riboflavin excretion depended on temperature and pH of incubation medium (pH optimum approximately 7.0) and was decreased in the presence of different inhibitors of energy metabolism. It seems that the exit of riboflavin from the cells is accomplished by energy-dependent specific system of excretion (excretase) which in some properties is different from that of riboflavin permease.  相似文献   

19.
Mutant strains of the yeast Pichia guilliermondii, carrying both rib80 and hit mutations in a haploid genome, were derived from previously obtained strains with defective rib80 or hit genes, exerting negative control of the riboflavin biosynthesis and iron transport in Pichia guilliermondii. The double mutant rib80hit strains exhibited an increased level of riboflavin biosynthesis and higher activities of GTP cyclohydrolase and riboflavin synthetase. Iron deficiency caused an additional increase in riboflavin overproduction. These results suggest the synergistic interaction of the rib80 and hit mutations. A combination of both mutations in a single genome did not affect iron assimilation by the cells: ferrireductase activity, the rate of 55Fe uptake, and the iron content in cells of the double mutants remained at the level characteristic of the parent strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号