首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monogenic rib83 mutation blocked riboflavin oversynthesis in the yeast Pichia guilliermondii and lowered iron acquisition by cells, their ferric reductase activity, and the growth rate in iron-deficient media. Mutants with the combined mutations of rib83 with rib80 and rib81 (the last two mutations impair the negative control of riboflavin synthesis and thus cause its oversynthesis) were unable to depress the enzymes of flavinogenesis (GTP cyclohydrolase and riboflavin synthase) and to overproduce riboflavin in both iron-deficient and iron-sufficient media. This suggests that the rib83 mutation is epistatic with respect to the rib80 and rib81 mutations. The RIB83 gene may positively control both riboflavin synthesis and iron acquisition in the yeast P. guilliermondii.  相似文献   

2.
The properties of mutants resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)-isoalloxazine (MTRY) were studied. The mutants were isolated from a genetic line of Pichia guilliermondii. Several of them were riboflavin overproducers and had derepressed flavinogenesis enzymes (GTP cyclohydrolase, 6.7-dimethyl-8-ribityllumazine synthase) in iron-rich medium. An additional derepression of these enzymes as well as derepression of riboflavin synthase occurred in iron-deficient medium. The characters "riboflavin oversynthesis" and "derepression of enzymes" were recessive in mutants of the 1st class, or dominant in those of the 2nd class. The hybrids of analogue-resistant strains of the 1st class with previously isolated regulatory mutants ribR (novel designation rib80) possessed the wild-type phenotype and were only capable of riboflavin overproduction under iron deficiency. Complementation analysis of the MTRY-resistant mutants showed that vitamin B2 oversynthesis and enzymes' derepression in these mutants are caused by impairment of a novel regulatory gene, RIB81. Thus, riboflavin biosynthesis in P. guilliermondii yeast is regulated at least by two genes of the negative action: RIB80 and RIB81. The meiotic segregants which contained rib80 and rib81 mutations did not show additivity in the action of the above regulatory genes. The hybrids of rib81 mutants with natural nonflavinogenic strain P. guilliermondii NF1453-1 were not capable of riboflavin oversythesis in the iron-rich medium. Apparently, the strain NF1453-1 contains an unaltered gene RIB81.  相似文献   

3.
Stenchuk NN  Kapustiak KE 《Genetika》2003,39(8):1026-1032
A method of positive selection of mutants with impaired regulation of flavinogenesis and metal homeostasis in yeast Pichia guilliermondii was developed. This positive selection system was based on the isolation of pseudo-wild-type revertants (the Rib+ phenotype) in riboflavin-dependent rib1-86 mutant (the Rib- phenotype) of yeast P. guilliermondii. Mutation rib1-86 blocks activity of the GTP cyclohydrolase II catalyzing the first step in riboflavin (RF) biosynthesis. Study of a collection of spontaneous Rib+ revertants allowed the identification of a considerably large number of genetic loci responsible for the suppression of rib1-86, which include both previously identified three loci (rib80, rib81, and hit1) and six new loci designated red1-red6 (reduction). A comparative analysis of the wild-type strain and red mutants revealed that these mutants had higher activity levels of GTP cyclohydrolase and RF-synthase, elevated levels of RF biosynthesis, enhanced Fe/Cu reductase activity and higher total iron content in cells and that they are characterized by enhanced sensitivity to transition metals (Fe(III), Cu(II), Cd(II), Co(II), Zn(II), Ag(I), and to H2O2. The metal hypersensitivity of mutant cells can be prevented by an increased amount of extracellular iron ions. Mutations red1 and red6 synergistically interact with the locus rib81 in the course of RF biosynthesis. Obviously, each RED gene plays an important role in the regulation of both flavinogenesis and metal homeostasis in P. guilliermondii cells.  相似文献   

4.
Mutant strains of the yeast Pichia guilliermondii, carrying both rib80 and hit mutations in a haploid genome, were derived from previously obtained strains with defective rib80 or hit genes, exerting negative control of the riboflavin biosynthesis and iron transport in Pichia guilliermondii. The double mutant rib80hit strains exhibited an increased level of riboflavin biosynthesis and higher activities of GTP cyclohydrolase and riboflavin synthetase. Iron deficiency caused an additional increase in riboflavin overproduction. These results suggest the synergistic interaction of the rib80 and hit mutations. A combination of both mutations in a single genome did not affect iron assimilation by the cells: ferrireductase activity, the rate of 55Fe uptake, and the iron content in cells of the double mutants remained at the level characteristic of the parent strains.  相似文献   

5.
Pichia guilliermondii is a representative of a yeast species, all of which over-synthesize riboflavin in response to iron deprivation. Molecular genetic studies in this yeast species have been hampered by a lack of strain-specific tools for gene manipulation. Stable P. guilliermondii ura3 mutants were selected on the basis of 5'-fluoroorotic acid resistance. Plasmid carrying Saccharomyces cerevisiae URA3 gene transformed the mutant strains to prototrophy with a low efficiency. Substitution of a single leucine codon CUG by another leucine codon CUC in the URA3 gene increased the efficiency of transformation 100 fold. Deletion cassettes for the RIB1 and RIB7 genes, coding for GTP cyclohydrolase and riboflavin synthase, respectively, were constructed using the modified URA3 gene and subsequently introduced into a P. guilliermondii ura3 strain. Site-specific integrants were identified by selection for the Rib(-) Ura(+) phenotype and confirmed by PCR analysis. Transformation of the P. guilliermondii ura3 strain was performed using electroporation, spheroplasting or lithium acetate treatment. Only the lithium acetate transformation procedure provided selection of uracil prototrophic, riboflavin deficient recombinant strains. Depending on the type of cassette, efficiency of site-specific integration was 0.1% and 3-12% in the case of the RIB1 and RIB7 genes, respectively. We suggest that the presence of the ARS element adjacent to the 3' end of the RIB1 gene significantly reduced the frequency of homologous recombination. Efficient gene deletion in P. guilliermondii can be achieved using the modified URA3 gene of S. cerevisiae flanked by 0.8-0.9 kb sequences homologous to the target gene.  相似文献   

6.
More than 90 mutants resistant to the adenine analogue 4-aminopyrazole[3,4-d]pyrimidine (4-APP), were isolated from a wild-type strain of yeast Pichia guilliermondii. Some of Appr mutants accumulated noticeable amounts of products absorbing at 260 nm in the culture medium, probably nucleotides and their derivatives. In comparison to the parent strain, the mutant Appr-27 synthesized greater amounts of xanthine and uracil suggesting the presence of defects in the regulation of de novo biosynthesis of purines and pyrimidines. The regulatory mutations rib80 and rib81 are known to cause riboflavin (RF) overproduction and derepression of RF-producing enzyme synthesis in P. guilliermondii. The mutant Appr-27 was crossed to the rib81 strain. The yield of RF biosynthesis in some meiotic segregants was significantly higher than that in segregants from the diploid rib81/RIB81. Apparently, rib81 and appr mutations were combined in single genome on the favorable genetic background. An increase in RF production was also found in strains with appr mutations induced directly in the genome of the RF oversynthesizing strain rib80 rib81. These results indicate that introduction of appr mutations into genome of P. guilliermondii can intensify their RF overproduction.  相似文献   

7.
8.
Abstract–Monogenicrib83mutation blocked riboflavin oversynthesis in the yeast Pichia guilliermondiiand lowered iron acquisition by cells, their ferric reductase activity, and the growth rate in iron-deficient media. Mutants with the combined mutations of rib83with rib80and rib81(the last two mutations impair the negative control of riboflavin synthesis and thus cause its oversynthesis) were unable to depress the enzymes of flavinogenesis (GTP cyclohydrolase and riboflavin synthase) or overproduce riboflavin in both iron-deficient and iron-sufficient media. This suggests that rib83mutation is epistatic with respect to rib80and rib81mutations. The RIB83gene may positively control both riboflavin synthesis and iron acquisition in the yeast P. guilliermondii.  相似文献   

9.
Mutant strains of the yeastPichia guilliermondii, carrying bothrib80 andhit mutations in a haploid genome, were derived from previously obtained strains with defectiverib80 orhit genes, exerting negative control of the riboflavin biosynthesis and iron transport inPichia guilliermondii. The double mutant rib80hit strains exhibited an increased level of riboflavin biosynthesis and higher activities of GTP cyclohydrolase and riboflavin synthetase. Iron deficiency caused an additional increase in riboflavin overproduction. These results suggest the synergistic interaction of therib80 andhit mutations. A combination of both mutations in a single genome did not affect iron assimilation by the cells: ferrireductase activity, the rate of55Fe uptake, and the iron content in cells of the double mutants remained at the level characteristic of the parent strains.  相似文献   

10.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5-1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b2, whereas the hitl mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

11.
The biosynthesis of riboflavin precursor 6,7-dimethyl-8-ribityllumazine was studied in extracts of Pichia guilliermondii yeast mutants of rib5 and rib6 genotypes with impaired synthesis of proteins P1 and P2, respectively. It was shown that synthesis of 6,7-dimethyl-8-ribityllumazine took place in extracts of rib5 mutant (active P1 protein) in the presence of 2,4-dihydroxy-5-amino-6-ribitylaminopyrimidine and the compound formed from ribose-5-phosphate by extracts of rib6 mutant (active P2 protein). No lumazine was formed in extracts of rib6 mutant from pyrimidine substrate and ribose-5-phosphate preincubated with extracts of rib5 mutant. Hence, P1 protein (the product of RIB5 gene) participates in the biosynthesis of 6,7-dimethyl-8-ribityllumazine from 2,4-dihydroxy-5-amino-6-ribitylaminopyrimidine and aliphatic intermediate which is formed from ribose-5-phosphate, under the action of P2 protein (the product of RIB6 gene).  相似文献   

12.
The effect of oxidative stress on riboflavin (vitamin B2) biosynthesis and iron accumulation in flavinogenic yeast P. guilliermondii was investigated. Treatment of P. guilliermondii cells with superoxidgenerating agent methylviologen leads to elevated production of malondialdyhyd (MDA) which reflects the overall cellular oxidation state. Increased iron content in the cells and enhanced productivity of flavinogenesis under these conditions has been shown too. Significant increasing of MDA and riboflavin production by yeast cells under iron deficiency was observed. Riboflavin overproducing P. guilliermondii mutant strains rib80, rib81 and hit, possess high iron transport and synthesize increased quantity of MDA. The role of riboflavin overproduction and activation of iron assimilation in the P. guilliermondii antioxidant defence is discussed.  相似文献   

13.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction to flavinogenesis. It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation. 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-methyl-8-trifluoro-methyl-10-(beta-hydroxyethyl)izoalloxazine and galactoflavin exerted only a slight effect on this process. The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2'-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect. The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

14.
Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B2) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3–3.5 times higher as compared to the parental strain. It produced 50–70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.  相似文献   

15.
Riboflavin deficient mutant Pichia guilliermondii MS1 which requires approximately 1000-fold lower concentration of exogenous vitamin B2 for growth when compared with a non-adapted riboflavin deficient mutants of this species was isolated by means of of UV-irradiation. The growth of the mutant was strongly inhibited by actinomycin D and L-canavanine. The revertant MS8 and MS14 which synthesized riboflavin were selected from the strain MS1. These revertants posses a multiple sensitivity to actinomycin D, rifamycin, euflavine, mitomycin C, antimycin A, 8-azaadenine, 8-azaguanine, L-canavanine and 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine. The ability to utilized glycerol and ethanol as a sole carbon source for growth was impaired in these mutants. The mutants which can utilize glycerol were isolated from the strain MS14. Such mutants were resistant to actonomycin D. Mutation (s) which determines a multiple sensitivity and inability to utilized glycerol was recessive.  相似文献   

16.
Pichia guilliermondii, Schwanniomyces occidentalis, Torulopsis candida and several riboflavin-dependent mutants of Torulopsis candida were grown in a medium with a low concentration of iron. In these conditions, the activity of GTP-cyclohydrolase which catalyzes the first step of flavinogenesis increases. The activity of the enzyme increases also when the cells of T. candida and P. guilliermondii with a high content of iron are incubated with alpha, alpha'-dipyridyl which induces overproduction of riboflavin; this action of alpha, alpha'-dipyridyl is eliminated by cycloheximide. Therefore, iron deficiency in the cells of these yeasts causes derepression of GTP-cyclohydrolase participating in riboflavin biosynthesis. The activity of the enzyme is inhibited by FAD but not by FMN and riboflavin.  相似文献   

17.
114 riboflavinless mutants were selected from the genetic line of Pichia guilliermondii yeast. By means of accumulation test the mutants were divided into five biochemical groups. In genetic experiments seven complementation classes were found among 106 mutants. The strains of the I biochemical group, accumulating no specific products, corresponded to complementation class rib1; II group, accumulating 2,4,5-triaminopyrimidine - to the class rib2; III group, accumulating 2,6-dihydroxy-4-ribitylaminopyrimidine - to the class rib3; the mutants of the IV group, accumulating 2,6-dihydroxy-5-amino-4-ribitylaminopyrimidine, were divided into three complementation classes rib4, rib5 and rib6; the mutants of the V group, acculumating 6,7-dimethyl-8-ribityllumazine, corresponded to the class rib7. Two mutants of the IV biochemical group within complementation classes rib4 and rib5 were detected could not grow in the medium with diacetyl without riboflavin. Intragenic complementation was found within classes rib6 and rib7. No linkage between mutations of different complementation classes was detected.  相似文献   

18.
Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae.  相似文献   

19.
The Pichia guilliermondii GSH1 and GSH2 genes encoding Saccharomyces cerevisiae homologues of glutathione (GSH) biosynthesis enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, respectively, were cloned and deleted. Constructed P. guilliermondii Δgsh1 and Δgsh2 mutants were GSH auxotrophs, displayed significantly decreased cellular GSH+GSSG levels and sensitivity to tert-butyl hydroperoxide, hydrogen peroxide, and cadmium ions. In GSH-deficient synthetic medium, growths of Δgsh1 and Δgsh2 mutants were limited to 3–4 and 5–6 cell divisions, respectively. Under these conditions Δgsh1 and Δgsh2 mutants possessed 365 and 148 times elevated riboflavin production, 10.7 and 2.3 times increased cellular iron content, as well as 6.8 and 1.4 fold increased ferrireductase activity, respectively, compared to the wild-type strain. Glutathione addition to the growth medium completely restored the growth of both mutants and decreased riboflavin production, cellular iron content, and ferrireductase activity to the level of the parental strain. Cysteine also partially restored the growth of the Δgsh2 mutants, while methionine or dithiothreitol could not restore the growth neither of the Δgsh1, nor of the Δgsh2 mutants. Besides, it was shown that in GSH presence riboflavin production by both Δgsh1 and Δgsh2 mutants, similarly to that of the wild-type strain, depended on iron concentration in the growth medium. Furthermore, in GSH-deficient synthetic medium P. guilliermondii Δgsh2 mutant cells, despite iron overload, behaved like iron-deprived wild-type cells. Thus, in P. guilliermondii yeast, glutathione is required for proper regulation of both riboflavin and iron metabolism.  相似文献   

20.
Red adenine-dependent mutants of Hansenula polymorpha, Pichia guilliermondii, Williopsis saturnus yeasts have been transformed by the plasmid pYE (ADE2) 2 DNA containing ADE2 gene from Saccharomyces cerevisiae. The analysis of two P. guilliermondii Ade+-transformants has revealed the integration of pYE (ADE2)2 sequence into the recipient strain genome and partial restoration of the deficient function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号