首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The mtDNA variation has been studied in representatives of the Russkoe Ust’e (n = 30), Kolyma (n = 31), and Markovo (n = 26) ethnic subgroups originating from Russian military men, hunters, and fishers who married local Yukaghir women and settled at the Arctic Ocean coast and on the Anadyr’ River more than 350 years ago. The mtDNA haplotypes characteristic of indigenous Siberian peoples have been demonstrated to form the basis of the mitochondrial gene pool of Russian old settlers of the region. Only one of 30 identified haplotypes belonging to 11 haplogroups (H2a) is characteristic of European populations. The C and D haplogroups are the most diverse. The analysis has revealed the characteristics of the population structure of the Russian old settlers and allowed them to be interpreted in terms of recent historical and environmental processes.  相似文献   

2.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin are found in various European populations at a low frequency (on average, less than 1%). Data on mtDNA variation in Eurasian and African populations have been analyzed, and African mtDNA lineages have been found in Europeans. It has been demonstrated that, despite the high diversity of mtDNA haplotypes of African origin in Europeans, few monophyletic clusters of African lineages are characterized by long-term diversity formed in Europe. Only two such mtDNA clusters (from haplogroups L1b and L3b) have been found, their evolutionary age not exceeding 6500 years. European and African populations have been compared with respect to the frequency distributions of the alleles of autosomal microsatellite loci found in Russian carriers of African mtDNA haplotypes. It has been demonstrated that alleles typical of Europeans are characteristic of the autosomal genotypes of these Russian individuals.  相似文献   

3.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin have been found at low frequency (1%, in average) in different European populations. In the present study, data on mtDNA variability in populations of Eurasia and Africa are analyzed and search of African-specific lineages present in Europeans is conducted. The results of analysis indicate that, despite a high diversity of African mtDNA haplotypes found in Europeans, monophyletic clusters of African mtDNA lineages, arisen in Europe and characterized by long-term diversity, are nearly absent in Europe. Only two respective clusters (belonging to haplogroups L1b and L3b), which evolutionary age does not exceed 6.5 thousands years, were revealed. Comparative analysis of distribution of frequencies of autosomal microsatellite alleles found in Russian individuals, carrying the African-specific mitochondrial haplotypes, in populations of Europe and Africa has indicated that autosomal genotypes of those Russian individuals are characterized by the presence of alleles characteristic mostly for Europeans.  相似文献   

4.
The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.  相似文献   

5.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

6.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

7.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

8.
Analysis of mtDNA markers in a population of the Nogays (n = 206), the people inhabiting the North Caucasus and speaking a Turkic language of the Altaic linguistic family, has revealed a high level of genetic diversity (H = 0.99). The identified haplotypes include all major West Eurasian haplogroups, with the prevalence of H and U clusters (22 and 21%, respectively), but the percentage of lineages specific for East Eurasian populations is the highest (40%). Some other mtDNA variants in the Nogay population belong to the M1 haplogroups typical of northeastern Africa and U2 characteristic of Indian populations. Thus, components of different origin have contributed to the gene pool of Nogays. An erratum to this article is available at .  相似文献   

9.
Analysis of markers mtDNA in a population of Nogays (n = 206), living on Nothern Caucasus and speaking on language of Turkic branch of the Altaic linguistic family, has shown, that the level of their genetic differentiation is high (H = 0.99). Among the found haplotypes there is all the basic Western Eurasian haplogroups, most often of which are clusters H (22%) and U (21%), however, the percentage of the lineages specific only for populations of East Eurasia (40%) is highest. In a population of Nogays there are also variants mtDNA, belonging to haplogroup M1, characteristic for North East Africa, and gaplogroup U2, typical for populations of India. This testifies about presence in a gene pool of Nogays people of components of a various parentage.  相似文献   

10.
Russian Journal of Genetics - To determine mtDNA haplogroups in the populations of Balkars (N = 235) and Karachays (N = 123), the nucleotide sequence of the hypervariable segment 1 (HVS1) and...  相似文献   

11.
Numerous studies of variation in mtDNA in Amerindian populations established that four haplogroups are present throughout both North and South America. These four haplogroups (A, B, C, and D) and perhaps a fifth (X) in North America are postulated to be present in the initial founding migration to the Americas. Furthermore, studies of ancient mtDNA in North America suggested long-term regional continuity of the frequencies of these founding haplogroups. Present-day tribal groups possess high frequencies of private mtDNA haplotypes (variants within the major haplogroups), consistent with early establishment of local isolation of regional populations. Clearly these patterns have implications for the mode of colonization of the hemisphere. Recently, the earlier consensus among archaeologists for an initial colonization by Clovis hunters arriving through an ice-free corridor and expanding in a "blitzkrieg " wave was shown to be inconsistent with extensive genetic variability in Native Americans; a coastal migration route avoids this problem. The present paper demonstrates through a computer simulation model how colonization along coasts and rivers could have rapidly spread the founding lineages widely through North America.  相似文献   

12.
1. Alzheimer’s disease (AD) is the most common form of dementia in the elderly in which interplay between genes and the environment is supposed to be involved. Mitochondrial DNA (mtDNA) has the only noncoding regions at the displacement loop (D-loop) region that contains two hypervariable segments (HVS-I and HVS-II) with high polymorphism. mtDNA has already been fully sequenced and many subsequent publications have shown polymorphic sites, haplogroups, and haplotypes. Haplogroups could have important implications to understand the association between mutability of the mitochondrial genome and the disease. 2. To assess the relationship between mtDNA haplogroup and AD, we sequenced the mtDNA HVS-I in 30 AD patients and 100 control subjects. We could find that haplogroups H and U are significantly more abundant in AD patients (P = 0.016 for haplogroup H and P = 0.0003 for haplogroup U), Thus, these two haplogroups might act synergistically to increase the penetrance of AD disease.  相似文献   

13.
Luo Y  Gao W  Liu F  Gao Y 《Mitochondrial DNA》2011,22(5-6):181-190
Tibetans are well adapted to living and thriving in high-altitude environments. Mitochondria are central links to oxygen consumption, and variations in mitochondrial DNA (mtDNA) could play a role in high-altitude adaptation. Alleles at several polymorphic sites in mtDNA define common haplotypes, or haplogroups, including some that have been implicated in the risk of developing certain diseases. However, few reports have determined whether relationships exist between haplogroups and high-altitude adaptation in the Tibetan population. The D4 haplogroup is a major haplogroup of the Han Chinese. In the present study, genotypes of 12 polymorphisms were determined in members of a Tibetan population (n = 72), low altitude-Han (la-Han, n = 144), and high altitude-Han (ha-Han, n = 227) populations using polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction-ligase detection reaction assays. The mitochondrial haplogroup D4 was negatively associated with high-altitude adaptation in Tibetans (P = 0.001 vs. la-Han, OR = 0.166, 95% CI = 0.048-0.567; P = 0.009 vs. ha-Han OR = 0.232, 95% CI = 0.069-0.778). The frequency of the nt3010G-nt3970C haplotype was significantly higher in Tibetans than in la-Han (P = 0.000) and ha-Han (P = 0.001) subjects. Findings in the present study suggest that unique mitochondrial variations determine a genetic background that is associated with high-altitude adaptation in the Tibetan population.  相似文献   

14.
Since mitochondrial DNA (mtDNA) are maternally inherited without recombination, geographic distribution of mtDNA in semiterrestrial cercopithecines is considered to be influenced by female philopatry. I examined the effect of sex difference in migration patterns on geographic distribution in a habitat whose environment has changed frequently. I investigated ten groups (n = 77) of grivets (Cercopithecus aethiops aethiops) along a 600-km stretch of the Awash River, Ethiopia. I examined the mtDNA distribution among natural local populations whose nuclear variation was already shown to have a widely homogeneous distribution. RFLP analysis of whole mtDNA genome using 17 enzymes identified ten haplotypes in five clusters (haplogroups). Sequence divergence within haplogroups ranged from 0.17%–0.38%, while divergence between haplogroups ranged between 1.0%–2.5%. Haplogroups were distributed in blocks which ranged from 120–250 km along the Awash River. The haplotype distribution pattern of males indicated that they migrate between the boundaries of these blocks. Moreover, a clumped distribution pattern suggests the history of matrilineal distribution by group fission and geographic expansion.  相似文献   

15.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

16.
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplogroup clusters, is associated with functional differences in mitochondrial function and susceptibility to various diseases, including ischemic cardiomyopathy. We hypothesized that mtDNA haplogroups, in particular H, J and K, might modify disease susceptibility to HCM. Mitochondrial DNA, isolated from blood, was sequenced and haplogroups identified in 91 probands with HCM. The association with HCM was ascertained using two Danish control populations. Haplogroup H was more prevalent in HCM patients, 60% versus 46% (p = 0.006) and 41% (p = 0.003), in the two control populations. Haplogroup J was less prevalent, 3% vs. 12.4% (p = 0.017) and 9.1%, (p = 0.06). Likewise, the UK haplogroup cluster was less prevalent in HCM, 11% vs. 22.1% (p = 0.02) and 22.8% (p = 0.04). These results indicate that haplogroup H constitutes a susceptibility factor and that haplogroup J and haplogroup cluster UK are protective factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy suggests that mtDNA haplotypes may be of significance in determining whether a physiological hypertrophy develops into myopathy. mtDNA haplotypes may have the potential of becoming significant biomarkers in cardiomyopathy.  相似文献   

17.
Genetic diversity has been analyzed in 22 ethnic groups of the Caucasus on the basis of data on Y-chromosome and mitochondrial DNA (mtDNA) markers, as well as genome-wide data on autosomal single-nucleotide polymorphisms (SNPs). It has been found that the West Asian component is prevailing in all ethnic groups studied except for Nogays. This Near Eastern ancestral component has proved to be characteristic of Caucasian populations and almost entirely absent in their northern neighbors inhabiting the Eastern European Plain. Turkic-speaking populations, except Nogays, did not exhibit an increased proportion of Eastern Eurasian mtDNA or Y-chromosome haplogroups compared to some Abkhaz-Adyghe populations (Adygs and Kabardians). Genome-wide SNP analysis has also shown substantial differences of Nogays from all other Caucasian populations studied. However, the characteristic difference of Nogays from other populations of the Caucasus seems somewhat ambiguous in terms of the R1a1a-M17(M198) and R1b1b1-M73 haplogroups of the Y chromosome. The state of these haplogroups in Turkic-speaking populations of the Caucasus requires further study.  相似文献   

18.
The Horn of Africa forms one of the two main historical entry points of domestics into the continent and Ethiopia is particularly important in this regard. Through the analysis of mitochondrial DNA (mtDNA) d‐loop region in 309 individuals from 13 populations, we reveal the maternal genetic variation and demographic dynamics of Ethiopian indigenous goats. A total of 174 variable sites that generated 231 haplotypes were observed. They defined two haplogroups that were present in all the 13 study populations. Reference haplotypes from the six globally defined goat mtDNA haplogroups show the two haplogroups present in Ethiopia to be A and G, the former being the most predominant. Although both haplogroups are characterized by an increase in effective population sizes (Ne) predating domestication, they also have experienced a decline in Ne at different time periods, suggesting different demographic histories. We observed seven haplotypes, six were directly linked to the central haplotypes of the two haplogroups and one was central to haplogroup G. The seven haplotypes were common between Ethiopia, Kenya, Egypt, and Saudi Arabia populations, suggesting common maternal history and the introduction of goats into East Africa via Egypt and the Arabian Peninsula, respectively. While providing new mtDNA data from a historically important region, our results suggest extensive intermixing of goats mediated by human socio‐cultural and economic interactions. These have led to the coexistence of the two haplogroups in different geographic regions in Ethiopia resulting in a large caprine genetic diversity that can be exploited for genetic improvement.  相似文献   

19.
The mtDNA polymorphism in representatives of various archaeological cultures of the Developed Bronze Age, Early Scythian, and Hunnish-Sarmatian periods was analyzed (N = 34). It detected the dominance of Western-Eurasian haplotypes (70.6%) in mtDNA samples from the representatives of the ancient population of the Early Bronze Age–Iron Age on the territory of Altai Mountains. Since the 8th to the 7th centuries BC, a sharp increase was revealed in the Eastern Eurasian haplogroups A, D, C, and Z (43.75%) as compared to previous cultures (16.7%). The presence of haplotype 223-242-290-319 of haplogroup A8 in Dolgans, Itelmens, Evens, Koryaks, and Yakuts indicates the possible long-term presence of its carriers in areas inhabited by these populations. The prevalence of western Eurasian haplotypes is observed not only in the Altai Mountains but also in Central Asia (Kazakhstan) and the south of the Krasnoyarsk Krai. All of the three studied samples from the Western Eurasian haplogroups were revealed to contain U, H, T, and HV. The ubiquitous presence of haplotypes of haplogroup H and some haplogroups of cluster U (U5a1, U4, U2e, and K) in the vast territory from the Yenisei River basin to the Atlantic Ocean may indicate the direction of human settlement, which most likely occurred in the Paleolithic Period from Central Asia.  相似文献   

20.
OBJECTIVES: The Finns, and to a more extreme extent the Saami, are genetic outliers in Europe. Despite the close geographical contact between these populations, no major contribution of Saami mtDNA haplotypes to the Finnish population has been detected. METHODS: To examine the extent of maternal gene flow from the Saami into Finnish populations, we determined the mtDNA variation in 403 persons living in four provinces in central and northern Finland. For all of these samples, we assessed the frequencies of mtDNA haplogroups and examined sequence variation in the hypervariable segment I (HVS-I). The resulting data were compared with published information for Saami populations. RESULTS: The frequencies of the mtDNA haplogroups differed between the populations of the four provinces, suggesting a distinction between northern and central Finland. Analysis of molecular variance suggested that the Saami deviated less from the population of northern Finland than from that of central Finland. Five HVS-I haplotypes, including that harboring the Saami motif and the Asian-specific haplogroup Z, were shared between the Finns and the Saami and allowed comparisons between the populations. Their frequency was highest in the Saami and decreased towards central Finland. CONCLUSIONS: The high frequency of certain mtDNA haplotypes considered to be Saami specific in the Finnish population suggests a genetic admixture, which appears to be more pronounced in northern Finland. Furthermore, the presence of haplogroup Z in the Finns and the Saami indicates that traces of Asian mtDNA genotypes have survived in the contemporary populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号