首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fc portion of immunoglobulin G (IgG) expresses the biantennary complex type oligosaccharides at Asn297 of the C(H)2 domain of each heavy chain with microheterogeneities depending on physiological and pathological states. These N-glycans are known to be essential for promotion of proper effector functions of IgG such as complement activation and Fcgamma receptor (FcgammaR)-mediated activities. To gain a better understanding of the role of Fc glycosylation, we prepared a series of truncated glycoforms of human IgG1-Fc and analyzed their interactions with human soluble FcgammaRIIIa (sFcgammaRIIIa) and with staphylococcal protein A by surface plasmon resonance and nuclear magnetic resonance (NMR) methods. Progressive but less pronounced reductions in the affinity for sFcgammaRIIIa were observed as a result of the galactosidase and subsequent N-acetylhexosaminidase treatments of IgG1-Fc. The following endoglycosidase D treatment, giving rise to a disaccharide structure composed of a fucosylated GlcNAc, abrogated the affinity of IgG1-Fc for sFcgammaRIIIa. On the other hand, those glycosidase treatments did not significantly affect the affinity of IgG1-Fc for protein A. Inspection of stable-isotope-assisted NMR data of a series of Fc glycoforms indicates that the stepwise trimming out of the carbohydrate residues results in concomitant increase in the number of amino acid residues perturbed thereby in the C(H)2 domains. Furthermore, the cleavage at the GlcNAcbeta1-4GlcNAc glycosidic linkage induced the conformational alterations of part of the lower hinge region, which makes no direct contact with the carbohydrate moieties and forms the major FcgammaR-binding site, while the conformation of the C(H)2/C(H)3 interface was barely perturbed that is the protein A-binding site. These results indicate that the carbohydrate moieties are required for maintaining the structural integrity of the FcgammaR-binding site.  相似文献   

2.
Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively “non-inflammatory” and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc–Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2–CH3 interface and known hydrophobic aggregation motifs. These Fc–Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen.  相似文献   

3.
The neurotrophin receptor (p75NTR) serves as a receptor for rabies virus (RV). We expressed and purified a soluble chimera consisting of the p75NTR ectodomain fused to the human immunoglobulin G1 (IgG1) Fc fragment (p75-Fc). Although p75-Fc interacts with RV, the infectivity of RV did not decrease significantly when it was incubated in the presence of the soluble receptor alone. However, when it was subsequently incubated with an antihuman IgG directed against the Fc fragment of p75-Fc, the infectivity of RV was significantly lowered (>90%), whereas incubation with antihuman IgG alone had no effect. We then selected eight independent RV mutants that were not neutralized by p75-Fc and antihuman IgG (srr [soluble receptor resistant] mutants). Each mutant carried a single mutation in the glycoprotein gene leading to one amino acid substitution in the protein. A total of four different substitutions were found. Two of the mutations were located at position 318 (phenylalanine replaced by a serine or a valine residue), and two were located at position 352 (histidine replaced by a tyrosine or an arginine residue). All of the mutations prevented the interaction with p75NTR as either a soluble or a membrane-anchored form. Two mutants (F318S) and (H352R) resulted in the formation of small plaques on BSR cells, probably due to the slower maturation of the glycoprotein. Immunoprecipitation, immunofluorescence, and neutralization assays showed that the four mutated glycoproteins still interacted with representative anti-RV glycoprotein monoclonal antibodies (MAbs), indicating that p75NTR binds outside of the known RV glycoprotein antigenic sites.  相似文献   

4.
The C(H)3 domain of antibodies is characterized by two antiparallel beta-sheets forming a disulfide-linked sandwich-like structure. At acidic pH values and low ionic strength, C(H)3 becomes completely unfolded. The addition of salt transforms the acid-unfolded protein into an alternatively folded state exhibiting a characteristic secondary structure. The transition from native to alternatively folded C(H)3 is a fast reaction. Interestingly, this reaction involves the formation of a defined oligomer consisting of 12-14 subunits. Association is completely reversible and the native dimer is quantitatively reformed at neutral pH. This alternatively folded protein is remarkably stable against thermal and chemical denaturation and the unfolding transitions are highly cooperative. With a t(m) of 80 degrees C, the stability of the alternatively folded state is comparable to that of the native state of C(H)3. The defined oligomeric structure of C(H)3 at pH 2 seems to be a prerequisite for the cooperative unfolding transitions.  相似文献   

5.
A model for the initiation of the diffuse-condensed transition of chromatin induced by a change in the conformation of lysine-rich histones is proposed. Three levels of folded structures are discussed. The first-order folded structure refers to the structure of the repeat unit of chromatin, which is called the nucleosome. The nucleosome contains a nuclease resistant region in which 140 base pairs of DNA are wrapped around the surface of a histone aggregated of two copies each of the histones H2A, H2B, H3 and H4. This DNA-histone aggregate is called a core particle. The nuclease accessible region of the nucleosome is approximately 60 base pairs of DNA which link the core particle, hence the terminology “linker DNA.” The lysine-rich histones, (Hl, H5), which are more loosely bound than the core histones, are associated with the linker DNA. The second-order folded structure refers to the conformation of a polynucleosome. Based on neutron scattering and quasielastic light scattering studies the second-order folded structure is assumed to be an extended helix in solution with 5–7 nucleosome units per turn. The third-order folded structure is defined as that structure resulting from the first stage in the condensation process induced by a conformational change in the lysine-rich histones. Generation of the third-order folded structure in the proposed model is effected by an increased affinity of the lysine-rich histones for super-helical DNA in the core particles in adjacent turns of the second-order folded structure. Since the lysine-rich histones preferentially bind to A-T rich regions in DNA, the distribution of these regions would determine the third-order folded structure. The net effect of a non-random distribution of A-T rich regions as in the proposed model is the generation of a helix for the third-order folded structure. The assumption of a non-random distribution of A-T rich regions is indirectly supported by proflavine binding studies reported herein and by the existence of repetitive and non-repetitive DNA regions inferred from renaturation studies. One consequence of the proposed mechanism is that the majority of the A-T rich regions are in the interior of the third-order folded structure. Promoter sites of high A-T content would then be inaccessible to polymerases. The proposed model also suggests a role for spacer DNA in the genome. Higher order folded structures must also be present in the final state of condensed chromatin since the three orders of folded structures considered in this communication accounts for only 2% of that required in the diffuse-condensed transition.  相似文献   

6.
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.  相似文献   

7.
Wei Y  Li C  Huang W  Li B  Strome S  Wang LX 《Biochemistry》2008,47(39):10294-10304
The presence and precise structures of the glycans attached at the Fc domain of monoclonal antibodies play an important role in determining antibodies' effector functions such as antibody-dependent cell cytotoxicity (ADCC), complement activation, and anti-inflammatory activity. This paper describes a novel approach for glycoengineering of human IgG1-Fc that combines high-yield expression of human IgG1-Fc in yeast and subsequent in vitro enzymatic glycosylation, using the endoglycosidase-catalyzed transglycosylation as the key reaction. Human IgG1-Fc was first overproduced in Pichia pastoris. Then the heterogeneous yeast glycans were removed by Endo-H treatment to give the GlcNAc-containing IgG1-Fc as a homodimer. Finally, selected homogeneous glycans were attached to the GlcNAc-primer in the IgG1-Fc through an endoglycosidase-catalyzed transglycosylation, using sugar oxazolines as the donor substrates. It was found that the enzymatic transglycosylation was efficient with native GlcNAc-containing IgG1-Fc homodimer without the need to denature the protein, and the reaction could proceed to completion to give homogeneous glycoforms of IgG1-Fc when an excess of oligosaccharide oxazolines was used as the donor substrates. The binding of the synthetic IgG1-Fc glycoforms to the FcgammaIIIa receptor was also investigated. This novel glycoengineering approach should be useful for providing various homogeneous, natural or synthetic glycoforms of IgG1-Fc for structure-function relationship studies, and for future clinical applications.  相似文献   

8.
Human IgG2 antibodies display disulfide-mediated structural isoforms   总被引:1,自引:0,他引:1  
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.  相似文献   

9.
Domain 1 of the cell adhesion protein CD2 (CD2-1) has an all β-structure typical of proteins belonging to the immunoglobin superfamily. It has a remarkable, ability to fold as a native monomer or a metastable intertwined dimer. To understand the origin of structural rearrangements of CD2-1, we have studied equilibrium unfolding of the protein using various biophysical spectroscopic techniques. At temperatures above approx 68°C, a partially folded state of CD2-1 (H state) with a distinct secondary structure, involving largely exposed aromatic and hydrophobic residues and a substantially perturbed tertiary structure, is observed. In contrast, an unfolded state (D state) of CD2-1 with random-coil-like secondary and tertiary structures is observed in 6 M GuHCl. This partially folded high-temperature state has increased negative molar ellipticity at 222 nm in far-ultraviolet CD spectra, implying formation of a non-native helical conformation. The existence of this non-native high-temperature intermediate is consistent with relatively high intrinsic helical propensities in the primary sequence of CD2-1. This conformation flexibility may be important in the observed domain swapping of CD2-1.  相似文献   

10.
An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H. O hydrogen bond between Ala(4) C(alpha)H and (D)Leu(9) CO. The parameters for C-H. O interaction are Ala(4) C(alpha)H. O=C (D)Leu(9) distance 3.27 A, C(alpha)-H. O angle 176 degrees, and O. H(alpha) distance 2.29 A. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner.  相似文献   

11.
目的:构建炭疽受体CMG2和人IgG1 Fc片段融合基因载体,转染CHO细胞并通过毒素中和试验检测CMG2-Fc拮抗炭疽毒素(PA+LF)的能力。方法:将含有CMG2胞外区1-217AA片度基因和人IgG1的Fc片段基因共同连接入pcDNA3.1载体转染CHO细胞并筛选高表达CMG2-Fc的CHO细胞系,通过小鼠RAW264.7巨噬细胞保护试验检测CMG2-Fc拮抗炭疽毒素的能力。结果:获得了表达CMG2-Fc的细胞株,毒素中和实验显示该蛋白可以有效抑制炭疽毒素引起的细胞损伤。结论:CMG2-Fc能够保护小鼠巨噬细胞免受炭疽毒素攻击,提示其可以作为抗毒素治疗炭疽感染。  相似文献   

12.
Cold agglutinins (CAs) are IgM autoantibodies characterized by their ability to agglutinate in vitro RBC at low temperatures. These autoantibodies cause hemolytic anemia in patients with CA disease. Many diverse Ags are recognized by CAs, most frequently those belonging to the I/i system. These are oligosaccharides composed of repeated units of N:-acetyllactosamine, expressed on RBC. The three-dimensional structure of the Fab of KAU, a human monoclonal IgM CA with anti-I activity, was determined. The KAU combining site shows an extended cavity and a neighboring pocket. Residues from the hypervariable loops V(H)CDR3, V(L)CDR1, and V(L)CDR3 form the cavity, whereas the small pocket is defined essentially by residues from the hypervariable loops V(H)CDR1 and V(H)CDR2. This fact could explain the V(H)4-34 germline gene restriction among CA. The KAU combining site topography is consistent with one that binds a polysaccharide. The combining site overall dimensions are 15 A wide and 24 A long. Conservation of key binding site residues among anti-I/i CAs indicates that this is a common feature of this family of autoantibodies. We also describe the first high resolution structure of the human IgM C(H)1:C(L) domain. The structural analysis shows that the C(H)1-C(L) interface is mainly conserved during the isotype switch process from IgM to IgG1.  相似文献   

13.
Amyloid fibril formation is a distinctive hallmark of a number of degenerative diseases. In this process, protein monomers self-assemble to form insoluble structures that are generally referred to as amyloid fibrils. We have induced in vitro amyloid fibril formation of a PDZ domain by combining mechanical agitation and high ionic strength under conditions otherwise close to physiological (pH 7.0, 37°C, no added denaturants). The resulting aggregates enhance the fluorescence of the thioflavin T dye via a sigmoidal kinetic profile. Both infrared spectroscopy and circular dichroism spectroscopy detect the formation of a largely intermolecular β-sheet structure. Atomic force microscopy shows straight, rod-like fibrils that are similar in appearance and height to mature amyloid-like fibrils. Under these conditions, before aggregation, the protein domain adopts an essentially native-like structure and an even higher conformational stability (ΔGU-FH2O). These results show a new method for converting initially folded proteins into amyloid-like aggregates. The methodological approach used here does not require denaturing conditions; rather, it couples agitation with a high ionic strength. Such an approach offers new opportunities to investigate protein aggregation under conditions in which a globular protein is initially folded, and to elucidate the physical forces that promote amyloid fibril formation.  相似文献   

14.
Pepsin, a gastric aspartic proteinase, is a zymogen-derived protein that undergoes irreversible alkaline denaturation at pH 6-7. Detailed knowledge of the structure of the alkaline-denatured state is an important step in understanding the mechanism of the formation of the active enzyme. An extensive analysis of the denatured state at pH 8.0 was performed using a variety of techniques including (1)H nuclear magnetic resonance spectroscopy and solution X-ray scattering. This analysis indicates that the denatured state under these conditions has a compact and globular conformation with a substantial amount of secondary and tertiary structures. The data suggest that this partially structured species has a highly folded region and a flexible region. The NMR measurements suggest that the folded region contains His53 and is located at least partly in the N-terminal lobe of the protein. The alkaline-denatured state experiences a further reversible denaturation step at higher pH or on heating; the midpoints of the unfolding transition are pH 11.5 (at 25 degrees C) and 53.1 degrees C (at pH 8.0), respectively. The present findings suggest that the proteolytic processing of pepsinogen has substantially modified the ability of the protein to fold, such that its folding process cannot progress beyond the partially folded intermediate of pepsin.  相似文献   

15.
alpha-Chemokines are known heparin-binding proteins. Here, a heparin dodecasaccharide (H12) was purified and used in NMR studies to investigate binding to growth-related protein-alpha (Gro-alpha) and to platelet factor-4-M2 (PF4-M2), an N-terminal chimera of PF4. Pulsed field gradient NMR was used to derive diffusion coefficients as the protein (monomer):H12 ratio was varied. In the absence of H12, both PF4-M2 and Gro-alpha give diffusion coefficients consistent with the presence of mostly dimers. As the PF4-M2:H12 ratio is increased from 1:6 to 2:1, the diffusion coefficient increases, indicating dissociation to the monomer state. On addition of H12 to either protein, (15)N/(1)H heteronuclear single quantum coherence NMR data demonstrate loss of (1)H resonance dispersion and intensity, particularly at protein:H12 ratios of 2:1 to 4:1, indicating significant perturbation to native structures. For Gro-alpha in particular, (1)H resonance dispersion appears random coil-like. At these same ratios, circular dichroism (CD) data show general retention of secondary structure elements with a slight shift to additional helix formation. Random coil NMR resonance dispersion suggests a shift to a less compact, partially folded, and/or more flexible state. Further addition of H12 causes resonance intensity and dispersion to return making NMR spectra appear native-like. At low PF4-M2:H12 ratios, loss of resonance intensity for residues proximal to Arg-20 and Arg-22 in three-dimensional NMR HCCH-TOCSY spectra suggests that the Arg-20-Arg-22 loop either interacts most strongly with H12 and/or that binding at this site is heterogeneous. This domain was previously shown to be crucial to heparin binding. Of particular interest to the biology of PF4-heparin complex formation, heparin-induced thrombocytopenia antibody binding occurs at about the same PF4-M2:H12 ratio as does this transition to a partially folded PF4-M2 state, strongly suggesting that heparin-induced thrombocytopenia antibody recognizes a less folded, lower aggregate state of the protein.  相似文献   

16.
Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab’)2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α–Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α–Cbtx. Mouse α–Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α–Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy.  相似文献   

17.
The non-covalent homodimer formed by the C-terminal domains of the IgG1 heavy chains (C(H)3) is the simplest naturally occurring model system for studying immunoglobulin folding and assembly. In the native state, the intrachain disulfide bridge, which connects a three-stranded and a four-stranded beta-sheet is buried in the hydrophobic core of the protein. Here, we show that the disulfide bridge is not required for folding and association, since the reduced C(H)3 domain folds to a dimer with defined secondary and tertiary structure. However, the thermodynamic stability of the reduced C(H)3 dimer is much lower than that of the oxidized state. This allows the formation of disulfide bonds either concomitant with folding (starting from the reduced, denatured state) or after folding (starting from the reduced dimer). The analysis of the two processes revealed that, under all conditions investigated, one of the cysteine residues, Cys 86, reacts preferentially with oxidized glutathione to a mixed disulfide that subsequently interacts with the less-reactive second thiol group of the intra-molecular disulfide bond. For folded C(H)3, the second step in the oxidation process is slow. In contrast, starting from the unfolded and reduced protein, the oxidation reaction is faster. However, the overall folding reaction of C(H)3 during oxidative folding is a slow process. Especially, dimerization is slow, compared to the association starting from the denatured oxidized state. This deceleration may be due to misfolded conformations trapped by the disulfide bridge.  相似文献   

18.
The septins are a family of conserved proteins involved in cytokinesis and cortical organization. An increasing amount of data implicates different septins in diverse pathological conditions including neurodegenerative disorders, neoplasia and infections. Human SEPT4 is a member of this family and its tissue-specific ectopic expression profile in colorectal and urologic cancer makes it a useful diagnostic biomarker. Thermal unfolding of the GTPase domain of SEPT4 (SEPT4-G) revealed an unfolding intermediate which rapidly aggregates into amyloid-like fibers under physiological conditions. In this study, we examined the effects of protein concentration, pH and metals ions on the aggregation process of recombinant SEPT4-G using a series of biophysical techniques, which were also employed to study chemical unfolding and stability. Divalent metal ions caused significant acceleration to the rate of SEPT4-G aggregation. Urea induced unfolding was shown to proceed via the formation of a partially unfolded intermediate state which unfolds further at higher urea concentrations. The intermediate is a compact dimer which is unable to bind GTP. At 1 M urea concentration, the intermediate state was plagued by irreversible aggregation at temperatures above 30 degrees C. However, higher urea concentration resulted in a marked decay of the aggregation, indicating that the partially folded structures may be necessary for the formation of these aggregates. The results presented here are consistent with the recently determined crystal structure of human septins and shed light on the aggregation properties of SEPT4 pertinent to its involvement in neurodegenerative disease.  相似文献   

19.
Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br(2) footprinting experiments on a mixture of the ILPR-I3 and a 5'-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures.  相似文献   

20.
Rheumatoid factors (RF) are autoantibodies that recognize epitopes in the Fc region of immunoglobulin (Ig) G and that correlate with the clinical severity of rheumatoid arthritis (RA). Here we report the X-ray crystallographic structure, at 3 A resolution, of a complex between the Fc region of human IgG1 and the Fab fragment of a monoclonal IgM RF (RF61), derived from an RA patient and with a relatively high affinity for IgG Fc. In the complex, two Fab fragments bind to each Fc at epitopes close to the C terminus, and each epitope comprises residues from both Cgamma3 domains. A central role in the unusually hydrophilic epitope is played by the side-chain of Arg355, accounting for the subclass specificity of RF61, which recognizes IgG1,-2, and -3 in preference to IgG4, in which the corresponding residue is Gln355. Compared with a previously determined complex of a lower affinity RF (RF-AN) bound to IgG4 Fc, in which only residues at the very edge of the antibody combining site were involved in binding, the epitope bound by RF61 is centered in classic fashion on the axis of the V(H):V(L) beta-barrel. The complementarity determining region-H3 loop plays a key role, forming a pocket in which Arg355 is bound by two salt-bridges. The antibody contacts also involve two somatically mutated V(H) residues, reinforcing the suggestion of a process of antigen-driven maturation and selection for IgG Fc during the generation of this RF autoantibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号