首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system.  相似文献   

2.
This study investigated the validity of the top-down approach of inverse dynamics analysis in fast and large rotational movements of the trunk about three orthogonal axes of the pelvis for nine male collegiate students. The maximum angles of the upper trunk relative to the pelvis were approximately 47°, 49°, 32°, and 55° for lateral bending, flexion, extension, and axial rotation, respectively, with maximum angular velocities of 209°/s, 201°/s, 145°/s, and 288°/s, respectively. The pelvic moments about the axes during the movements were determined using the top-down and bottom-up approaches of inverse dynamics and compared between the two approaches. Three body segment inertial parameter sets were estimated using anthropometric data sets (Ae et al., Biomechanism 11, 1992; De Leva, J Biomech, 1996; Dumas et al., J Biomech, 2007). The root-mean-square errors of the moments and the absolute errors of the peaks of the moments were generally smaller than 10 N·m. The results suggest that the pelvic moment in motions involving fast and large trunk movements can be determined with a certain level of validity using the top-down approach in which the trunk is modeled as two or three rigid-link segments.  相似文献   

3.
The assessment of trunk muscle activation and coordination using dynamometric measurements made in one anatomical plane has hardly minimized the production of out-of-plane coupled moments (CMs). This absence of control may add much variability in moment component partition as well as in recorded muscle activation. The aim of the study was to assess whether providing these CMs as visual feedback efficiently reduces them and whether this feedback influences trunk muscle activation. Twenty men performed five 5-s static ramp submaximal contractions, ranging from 0% to 55% of the maximal voluntary contraction (MVC), in six different directions while standing in a static dynamometer measuring L5/S1 moments. For each direction, four feedback conditions were offered, ranging from simple 1D-feedback in the primary plane of exertion, to full 3D-feedback. Surface electromyographic signals were collected for eight back and six abdominal muscles. Muscle activation amplitudes and CMs were extracted at each 10% force level from 10% to 50% maximum voluntary contraction (MVC). Providing 3D-feedback significantly reduced the CMs, at 50% MVC, by about 1–6%, 1–8% and 2–10% MVC in the sagittal, frontal and transverse planes, respectively. Providing 3D-feedback produced relatively small systematic effects (2–7%) on trunk muscle activation. However, the subjects responded differently to adequately control the coupled moments, leading in some cases to relatively high inter-individual differences in muscle activation. Interestingly, the statistical differences, and size of the effects, were mainly observed when the primary exertions were performed in the frontal and transverse planes. The implications of these findings are discussed.  相似文献   

4.
The purpose of this study was to determine whether changes in the amplitude of a motor action triggering the same perturbation affect anticipatory postural adjustments (APAs). Healthy subjects performed releases of the same load with shoulder abduction movements of different amplitudes. Changes in the electrical activity of trunk and leg muscles, as well as displacements of the center of pressure were recorded. Generally, there were no differences in anticipatory activity of muscles and displacements of the center of pressure between series of load releases induced by motor actions of different amplitudes. We suggest that the CNS arranges APAs based on the magnitude of the perturbation if the same muscle groups generate motor actions of different amplitudes.  相似文献   

5.
We present a new critical illness VR rehabilitation device (X-VR-D) that enables diversified self-training and is applicable early in the rehabilitation of severely injured or ill patients. The X-VR-D consists of a VR program delivering a virtual scene on a flat screen and simultaneously processing commands to a moving chair mounted on a motion system. Sitting in the moving chair and exposed to a virtual reality environment the device evokes anticipatory and reactive muscle contractions in trunk and extremities for postural control. In this study we tested the device in 10 healthy subjects to evaluate whether the enforced perturbations indeed evoke sufficient and reproducible EMG muscle activations.

We found that particular fast roll and pitch movements evoke adequate trunk and leg muscle activity. Higher angular velocities and higher angles of inclination elicited broader EMG bursts and larger amplitudes. The muscle activation pattern was highly consistent between different subjects and although we found some habituation of EMG responses in consecutive training sessions, the general pattern was maintained and was predictable for specific movements. The habituation was characterized by more efficient muscle contractions and better muscle relaxation during the rest positions of the device. Furthermore we found that the addition of a virtual environment to the training session evoked more preparatory and anticipatory muscle activation than sessions without a virtual environment.

We conclude that the X-VR-D is safe and effective to elicit consistent and reproducible muscle activity in trunk and leg muscles in healthy subjects and thus can be used as a training method.  相似文献   


6.
The study proposes a rigid-body biomechanical model of the trunk and whole upper limb including scapula and the test of this model with a kinematic method using a six-dimensional (6-D) electromagnetic motion capture (mocap) device. Large unconstrained natural trunk-assisted reaching movements were recorded in 7 healthy subjects. The 3-D positions of anatomical landmarks were measured and then compared to their estimation given by the biomechanical chain fed with joint angles (the direct kinematics). Thus, the prediction errors was attributed to the different joints and to the different simplifications introduced in the model. Large (approx. 4 cm) end-point prediction errors at the level of the hand were reduced (to approx. 2 cm) if translations of the scapula were taken into account. As a whole, the 6-D mocap seems to give accurate results, except for prono-supination. The direct kinematic model could be used as a virtual mannequin for other applications, such as computer animation or clinical and ergonomical evaluations.  相似文献   

7.
It has been suggested that the uniquely large gluteus maximus (GMAX) muscles were an important adaptation during hominin evolution based on numerous anatomical differences between humans and extant apes. GMAX electromyographic (EMG) signals have been quantified for numerous individual movements, but not across the range of locomotor gaits and speeds for the same subjects. Thus, comparing relative EMG amplitudes between these activities has not been possible. We assessed the EMG activity of the gluteal muscles during walking, running, sprinting, and climbing. To gain further insight into the function of the gluteal muscles during locomotion, we measured muscle activity during walking and running with external devices that increased or decreased the need to control either forward or backward trunk pitch. We hypothesized that 1) GMAX EMG activity would be greatest during sprinting and climbing and 2) GMAX EMG activity would be modulated in response to altered forward trunk pitch demands during running. We found that GMAX activity in running was greater than walking and similar to climbing. However, the activity during sprinting was much greater than during running. Further, only the inferior portion of the GMAX had a significant change with altered trunk pitch demands, suggesting that the hip extensors have a limited contribution to the control of trunk pitch movements during running. Overall, our data suggest that the large size of the GMAX reflects its multifaceted role during rapid and powerful movements rather than as a specific adaptation for a single submaximal task such as endurance running. Am J Phys Anthropol 153:124–131, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion–extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference (“DIFF”) between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population.  相似文献   

9.
Slower trunk muscle responses are linked to back pain and injury. Unfortunately, clinical assessments of spine function do not objectively evaluate this important attribute, which reflects speed of trunk control. Speed of trunk control can be parsed into two components: (1) delay, the time it takes to initiate a movement, and (2) lag, the time it takes to execute a movement once initiated. The goal of this study is to demonstrate a new approach to assess delay and lag in trunk control using a simple tracking task. Ten healthy subjects performed four blocks of six trials of trunk tracking in the sagittal plane. Delay and lag were estimated by modeling trunk control for predictable and unpredictable (control mode) trunk movements in flexion and extension (control direction) at movement amplitudes of 2°, 4°, and 6° (control amplitude). The main effect of control mode, direction, and amplitude of movement were compared between trial blocks to assess secondary influencers (e.g., fatigue). Only control mode was consistent across trial blocks with predictable movements being faster than unpredictable for both delay and lag. Control direction and amplitude effects on delay and lag were consistent across the first two trial blocks and less consistent in later blocks. Given the heterogeneity in the presentation of back pain, clinical assessment of trunk control should include different control modes, directions, and amplitudes. To reduce testing time and the influence of fatigue, we recommend six trials to assess trunk control.  相似文献   

10.
The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior–posterior translations, medial–lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial–lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior–posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired.  相似文献   

11.
The aim of this study was to investigate the contribution of upper extremity, trunk, and lower extremity movements in overarm throwing in team handball. In total, 11 joint movements during the throw were analyzed. The analysis consists of maximal angles, angles at ball release, and maximal angular velocities of the joint movements and their timing during the throw. Only the elbow angle (extension movement range) and the level of internal rotation velocity of the shoulder at ball release showed a significant relationship with the throwing performance. Also, a significant correlation was found for the timing of the maximal pelvis angle with ball velocity, indicating that better throwers started to rotate their pelvis forward earlier during the throw. No other significant correlations were found, indicating that the role of the trunk and lower limb are of minor importance for team handball players.  相似文献   

12.
Control of eye movements is essential in accomplishing visual or perceptive tasks. The brain and central nervous system process retinal information and send nervous signals to the extraocular muscles, which exert forces that cause the eye to move. A model for the human extraocular plant, which consists of the nervous input signals, the extraocular muscles, the orbit and the globe, is proposed. The derivation is based on anatomical and physiological data as well as experiments concerned with a variety of eye movements under normal and abnormal conditions. The nervous activity controlling eye movements was estimated from electromyography and single unit studies of the extraocular nuclei. The equations describing muscle properties were discussed in a previous paper by the authors; these results were incorporated into the present model. The characteristics of the isolated globe and its visco-elastic interaction with the orbit were computed from length- tension curves and isotonic experiments. Simulations using the resulting representation accurately depicted the isotonic experiments on the isolated globe and on the total extraocular plant, the isometric forces during three different types of eye movements, and the weighted globe experiment. A future paper will show that the model accurately simulates normal eye movements of different types and amplitudes.  相似文献   

13.

Objective

The purpose of this study is to provide an optimized method to reconstruct the structure of the upper airway (UA) based on magnetic resonance imaging (MRI) that can faithfully show the anatomical structure with a smooth surface without artificial modifications.

Methods

MRI was performed on the head and neck of a healthy young male participant in the axial, coronal and sagittal planes to acquire images of the UA. The level set method was used to segment the boundary of the UA. The boundaries in the three scanning planes were registered according to the positions of crossing points and anatomical characteristics using a Matlab program. Finally, the three-dimensional (3D) NURBS (Non-Uniform Rational B-Splines) surface of the UA was constructed using the registered boundaries in all three different planes.

Results

A smooth 3D structure of the UA was constructed, which captured the anatomical features from the three anatomical planes, particularly the location of the anterior wall of the nasopharynx. The volume and area of every cross section of the UA can be calculated from the constructed 3D model of UA.

Conclusions

A complete scheme of reconstruction of the UA was proposed, which can be used to measure and evaluate the 3D upper airway accurately.  相似文献   

14.
The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.  相似文献   

15.
The role of axial form and function during the vertebrate water to land transition is poorly understood, in part because patterns of axial movement lack morphological correlates. The few studies available from elongate, semi-aquatic vertebrates suggest that moving on land may be powered simply from modifications of generalized swimming axial motor patterns and kinematics. Lungfish are an ideal group to study the role of axial function in terrestrial locomotion as they are the sister taxon to tetrapods and regularly move on land. Here we use electromyography and high-speed video to test whether lungfish moving on land use axial muscles similar to undulatory swimming or demonstrate novelty. We compared terrestrial lungfish data to data from lungfish swimming in different viscosities as well as to salamander locomotion. The terrestrial locomotion of lungfish involved substantial activity in the trunk muscles but almost no tail activity. Unlike other elongate vertebrates, lungfish moved on land with a standing wave pattern of axial muscle activity that closely resembled the pattern observed in terrestrially locomoting salamanders. The similarity in axial motor pattern in salamanders and lungfish suggests that some aspects of neuromuscular control for the axial movements involved in terrestrial locomotion were present before derived appendicular structures.  相似文献   

16.
Research suggests that abnormal coordination patterns between the thorax and pelvis in the transverse plane observed in patients with Parkinson's disease and the elderly might be due to alteration in axial trunk stiffness. The purpose of this study was to develop a tool to estimate axial trunk stiffness during walking and to investigate its functional role. Fourteen healthy young subjects participated in this study. They were instructed to walk on the treadmill and kinematic data was collected by 3D motion analysis system. Axial trunk stiffness was estimated from the angular displacement between trunk segments and the amount of torque around vertical axis of rotation. The torque due to arm swing cancelled out the torque due to the axial trunk stiffness during walking and the thoracic rotation was of low amplitude independent of changes in walking speeds within the range used in this study (0.85-1.52 m/s). Estimated axial trunk stiffness increased with increasing walking speed. Functionally, the suppression of axial rotation of thorax may have a positive influence on head stability as well as allowing recoil between trunk segments. Furthermore, the increased stiffness at increased walking speed would facilitate the higher frequency rotation of the trunk in the transverse plane required at the higher walking speeds.  相似文献   

17.
Many investigators have performed studies on specific defect situations or determined the contribution on isolated structures. Investigating the contribution of functional structures requires obtaining the kinematic response directly on spinal segments. The purpose of this study was to quantify the function of anatomical components on lumbar segments for different loading magnitudes. Eight spinal segments (L4-5) with a median age of 52 years (ranging from 38 to 59 years) and a low degree of disc degeneration were utilized for the in vitro testing. Specimens were mounted in a custom-built spine tester and loaded with pure moments (1-10 N m) to move within three anatomical planes at a loading rate of 1.0 degrees /s. Anatomy was successively reduced by: ligaments, facet capsules, joints and nucleus. Data were evaluated for range of motion, neutral zone and lordosis angle. Transection of posterior ligaments predominantly increased specimen flexion for all bending moments applied. Supraspinous ligament also indicated to resist in extension slightly, whereas the facet capsules did not. Facet joints contributed to axial rotation, but not in lateral bending. The anterior longitudinal ligament was found to slightly resist in axial rotation, but strongly in extension. Nucleotomy caused largest increase of all movements. The unloaded posture of the specimens changed after ligament dissection, indicating ligament pretension. The region of lumbar spine is interesting for finite element (FE) simulation due to the high evidence of disc degeneration and injuries. This study may help to understand the function of specific anatomical structures and assists in FE model calibration. We suggest to start a calibration procedure for such models with the smallest functional structure (annulus) and to cumulatively add further structures.  相似文献   

18.
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage.  相似文献   

19.
Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号