首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive analytical procedure for the determination of residues of leucomalachite green (LMG)-malachite green (MG) and leucogentian violet (LGV)-gentian violet (GV) in catfish or trout tissue is presented. Frozen (−20°C) fish fillets were cut into small pieces and blended in a Waring blender. A 20-g amount of homogenized fish tissue was extracted with acetonitrile-buffer, partitioned against methylene chloride, and cleaned up on tandem neutral alumina and propylsulfonic acid cation-exchange solid-phase extraction cartridges. Samples of 100 μl (0.8 g equiv.) were chromatographed isocratically in 10 min using an acetonitrile-buffer mobile phase on a short-chain deactivated (SCD) reversed-phase column (250×4.6 mm I.D.) in-line with a post-column PbO2 oxidation reactor. The PbO2 post-column reactor efficiently oxidized LMG to the chromatic MG, and LGV to the chromatic GV permitting visible detection at 588 nm for all four compounds. Linearity was demonstrated with standards over the range of 0.5–50 ng per injection. Recoveries of LMG, MG, LGV and GV from catfish tissues fortified at 10 ng/g were 75.4±3.0, 61.3±4.1, 72.6±3.7 and 87.9±2.5, respectively, while trout tissues fortified at 10 ng/g yielded recoveries of 82.6±2.3, 48.6±1.8, 72.1±2.1 and 83.8±4.6 (mean±S.D., N=4), respectively.  相似文献   

2.
Gentian violet is a triphenylmethane dye that is an antifungal/antiparastic agent. GV is similar to malachite green that has been used in the aquaculture industry for treatment or prevention of external fungal and parasitic infections in fish and fish eggs although it (MG) is not approved for this use. For these reasons, GV’s potential for misuse by the aquaculture industry is high. The uptake and depletion of gentian violet (GV) were determined in channel catfish (Ictalurus punctatus) after water-borne exposure (100 ng ml−1, 1 h) under simulated aquaculture farming conditions. Leucogentian violet (LGV) was rapidly formed, concentrated in the muscle tissue, and very slowly eliminated from muscle tissue. An isocratic (60% acetonitrile–40% water; 0.05 M ammonium acetate buffer, pH 4.5) HPLC system consisting of a 5 μm LC–CN 250×4.6 mm I.D. column, a 20×2.0 mm I.D. PbO2 oxidative post-column, and a UV–VIS detector set at 588 nm were used to determine uptake and depletion of tissue residues of GV and LGV with time. GV was rapidly depleted and converted to its major metabolite, LGV, which was detected out to 79 days. Therefore, LGV is the appropriate target analyte for monitoring exposure of channel catfish to GV.  相似文献   

3.
High-performance liquid chromatographic methods using reversed-phase chromatography and electrochemical detection have been developed for the quantitation of azithromycin in serum and tissues of laboratory animals and humans. Serum sample preparation involved addition of internal standard, alkalinization, and solvent extraction. Tissue sample preparation involved Polytron homogenization in acetonitrile containing internal standard, evaporation of the supernatant, alkalinization of the residue, and solvent extraction. Serum samples were chromatographed on an alkylphenyl-bonded silica column eluted with pH 6.8–7.2 mobile phase with a dual-electrode coulometric detector operated in the oxidative screen mode. Serum and tissue samples were chromatographed on a γRP-1 alumina column with pH 11 mobile phase with a glassy carbon amperometric detector. Recovery of azithromycin was 87% from serum and 85% from tissues. Linear standard curves were prepared in serum over two concentration ranges (0.01–0.20 and 0.20–2.0 μg/ml) and in tissues over several concentration ranges (0.1–2, 1–10, 10–100, and 100–1000 μg/g). In serum and tissues, intra- and inter-assay precision ranged from 1 to 8% and 4 to 11%, respectively. The tissue assay has been applied to liver, kidney, lung, spleen, muscle, fat, brain, tonsil, lymph nodes, eye, prostate and other urological tissues, and gynecological tissues.  相似文献   

4.
We have developed a rapid and precise method for glutathione quantitation by capillary electrophoresis, that allows a low amount of both redox forms to be measured. Small fragments of rat heart or liver tissues (20 mg wet weight) and the corresponding mitochondria (1 mg protein) were homogenized in 1% perchloric acid and the acid-soluble phase ultrafiltered by centrifugation with a microconcentrator (Mr cut-off 3000 Da). The analysis was performed at a constant temperature (28°C) using a Beckman P/ACE System 2100, equipped with a UV absorbance detector set to 200 nm. The limit of quantitation in heart tissue was 1.8 μM for GSH and 1.2 μM for GSSG. Myocardial concentrations of GSH and GSSG were 8.1±2.6 and 0.45±0.15 (nmol/mg protein±S.D.), respectively. The ratio of GSH to GSSG was 17.8±1.3 for heart tissue, whereas it was much higher (>100) in the mitochondria. An oxidative stress decreased the myocardial tissue GSH/GSSG ratio, indicating that the CE analysis of both glutathione forms is also a useful method to study biological redox modification.  相似文献   

5.
An HPLC assay for etoposide in human serum was developed. Serum, spiked with podophyllotoxin (internal standard), was treated with sodium dodecyl sulphate prior to solid phase extraction. Analysis was performed on a 300×3.9 mm Bondclone 10 C18 column coupled with a fluorometric detector (λex 230 nm, λem 330 nm). The retention times for etoposide and podophyllotoxin were 14 and 28 min respectively. The range of assay was 0.5 to 20 μg/ml with a detection limit of 0.2 μg/ml. This assay is suitable for use in clinical studies with etoposide.  相似文献   

6.
The purpose of this study is to evaluate four rapid colourimetric methods, including the resazurin microtitre assay (REMA), malachite green decolourisation assay (MGDA), microplate nitrate reductase assay (MNRA) and crystal violet decolourisation assay (CVDA), for the rapid detection of multidrug-resistant (MDR) tuberculosis. Fifty Mycobacterium tuberculosis isolates were used in this study. Eighteen isolates were MDR, two isolates were only resistant to isoniazid (INH) and the remaining isolates were susceptible to both INH and rifampicin (RIF). INH and RIF were tested in 0.25 µg/mL and 0.5 µg/mL, respectively. The agar proportion method was used as a reference method. MNRA and REMA were performed with some modifications. MGDA and CVDA were performed as defined in the literature. The agreements of the MNRA for INH and RIF were 96% and 94%, respectively, while the agreement of the other assays for INH and RIF were 98%. In this study, while the specificities of the REMA, MGDA and CVDA were 100%, the specificity of the MNRA was lower than the others (93.3% for INH and 90.9% for RIF). In addition, while the sensitivity of the MNRA was 100%, the sensitivities of the others were lower than that of the MNRA (from 94.1-95%). The results were reported on the seventh-10th day of the incubation. All methods are reliable, easy to perform, inexpensive and easy to evaluate and do not require special equipment.  相似文献   

7.
An isocratic high-performance liquid chromatographic method with ultraviolet detection was utilized for the investigation of the pharmacokinetics of naringenin and its glucuronide conjugate in rat plasma and brain tissue. Plasma and brain tissue were deproteinized by acetonitrile, then centrifuged for sample clean-up. The drugs were separated by a reversed-phase C18 column with a mobile phase consisting of acetonitrile–orthophosphoric acid solution (pH 2.5–2.8) (36:64, v/v). The detection limits of naringenin in rat plasma and brain tissue were 50 ng/ml and 0.4 μg/g, respectively. The glucuronide conjugate of naringenin was evaluated by the deconjugated enzyme β-glucuronidase. The naringenin conjugation ratios in rat plasma and brain tissue were 0.86 and 0.22, respectively, 10 min after naringenin (20 mg/kg, i.v.) administration. The mean naringenin conjugation ratio in plasma was approximately four fold that in brain tissue.  相似文献   

8.
A rapid and sensitive HPLC method was developed for the determination of ampicillin residues in muscle tissues of beef, pork, chicken and catfish. Muscle tissues were blended with a food processor into paste. A 5-g aliquot of the blended tissues was homogenized with 14 ml of 0.01 M phosphate buffer (pH 4.5) using a tissue homogenizer. Proteins were precipitated with the addition of 1 ml trichloroacetic acid (75%, w/v) followed by centrifugation. After filtration, 1 ml of the supernatant was reacted with formaldehyde under acidic and heating conditions. The ampicillin fluorescent derivative was then analyzed by reverse phase HPLC with fluorescence detection. Recoveries of spiked ampicillin at 5, 10 and 20 ng/g were >85%, with coefficients of variation <5%. The limit of detection and limit of quantitation for ampicillin in the tissues were 0.6 ng/g and 1.5 ng/g, respectively. The method is also applicable to the analysis of ampicillin residue in dry milk powder.  相似文献   

9.
A reversed-phase high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat hepatic microsome has been developed. Racemic atenolol was extracted from alkalinized rat hepatic microsome by ethyl acetate. The organic layer was dried with anhydrous sodium sulfate and evaporated using a gentle stream of air. Atenolol racemic compound was derivatized with 2,3,4,6-tetra-O-acetyl-β- -glycopyranosyl isothiocyanate at 35°C for 30 min to form diastereomers. After removal of excess solvent, the diastereomers were dissolved in phosphate buffer (pH 4.6)–acetonitrile (50:30). The diastereomers were separated on a Shimadzu CLC-C18 column (10 μm particle size, 10 cm×0.46 cm I.D.) with a mobile phase of phosphate buffer–methanol–acetonitrile (50:20:30, v/v) at a flow-rate of 0.5 ml/min. A UV–VIS detector was operated at 254 nm. For each enantiomer, the limit of detection was 0.055 μg/ml (signal-to-noise ratio 3) and the limit of quantification (signal-to-noise ratio 10) was 0.145 μg/ml (RSD <10%). In the range 0.145–20 μg/ml, intra-day coefficients of variation were 1.0–7.0% and inter-day coefficients of variation were 0.4–16.5% for each enantiomer. The assay was applied to determine the concentrations of atenolol enantiomers in rat hepatic microsome as a function of time after incubation of racemic atenolol.  相似文献   

10.
A highly sensitive reversed-phase high-performance liquid chromatographic assay for ethanol and methanol in plasma, using a post-column enzymic reactor with electrochemical detection, has been developed. The alcohols, separated on the column, were converted by immobilized alcohol oxidase into their respective aldehydes with formation of stoichiometric amounts of hydrogen peroxide, detected via oxidation at a platinum electrode. As the chromatographic column, two glass cartridges (150 mm × 3 mm I.D.) in series, packed with 10-μm HEMA-S 1000® packing, were used. Alcohol oxidase from Candida boidinii was immobilized onto HEMA-BIO 1000 VS-L (10 μm), packed in a 30 mm × 3 mm I.D. glass cartridge. The reaction product, hydrogen peroxide, was detected with an amperometric detector with a platinum electrode, operated at +500 mV vs. an Ag/AgCl reference electrode. A 20-μl volume of ten-fold diluted plasma was injected without any pre-treatment. Under the described conditions, methanol and ethanol were well resolved from each other and from the “front” of the chromatogram. The limit of detection was ca. 2.5 nmol for ethanol and 0.6 nmol for methanol in plasma, at a signal-to-noise ratio of 3. Excellent linearity was observed for ethanol, in the range 0.125–4 μg injected (r = 0.9999). In contrast, the response for methanol was markedly non-linear above 500 μg injected, presumably owing to progressive saturation of the reactor. The precision and accuracy of the assay were satisfactory, as was the reactor life (one month).  相似文献   

11.
An aseptic vacuum extraction technique was used to obtain xylem fluid from the roots of rough lemon (Citrus jambhiri Lush.) rootstock of Florida citrus trees. Bacteria were consistently isolated from vascular fluid of both healthy and young tree decline-affected trees. Thirteen genera of bacteria were found, the most frequently occurring genera being Pseudomonas (40%), Enterobacter (18%), Bacillus, Corynebacterium, and other gram-positive bacteria (16%), and Serratia (6%). Xylem bacterial counts fluctuated seasonally. Bacterial populations ranged from 0.1 to 22 per mm3 of root tissue (about 102 to 2 × 104 bacteria per g of xylem) when bacterial counts were made on vascular fluid, but these numbers were 10- to 1,000-fold greater when aseptically homogenized xylem tissue was examined similarly. Some of the resident bacteria (4%) are potentially phytopathogenic. It is proposed that xylem bacteria have an important role in the physiology of citrus.  相似文献   

12.
A simple, sensitive and fully automated analytical method for the analysis of codeine in human plasma is presented. Samples are added with oxycodone, used as internal standard (I.S.), and directly loaded in the autosampler tray. An on-line sample clean-up system based on solid-phase extraction (SPE) cartridges (Bond-Elut C2, 20 mg) and valve switching (Prospekt) is used. Isocratic elution improved reproducibility and allowed the recirculation of the mobile phase. A Hypersil BDS C18, 3 μm, 10×0.46 cm column was used and detection was done by UV monitoring at 212 nm. Retention times of norcodeine (codeine metabolite), codeine and oxycodone (I.S.) were 5.5, 6.4 and 9.1 min, respectively. Morphine was left to elute in the chromatographic front. Detection limit for codeine was 0.5 μg l−1 and inter-assay precision (expressed as relative standard deviation) and accuracy (expressed as relative error) measured at 2 μg l−1 were 5.03% and 1.82%. Calibration range was 2–140 μg l−1.  相似文献   

13.
A sensitive and rapid high-performance liquid chromatographic screening method is described for the determination of anabolic steroid trenbolone in bovine muscle and liver. Trenbolone was analyzed as α- and β-trenbolone. Samples were extracted with ethyl acetate and cleaned up on a silica solid-phase extraction (SPE) cartridge. Liver samples were cleaned up on a multifunctional SPE cartridge before using a silica SPE cartridge. Analysis of α- and β-trenbolone was performed by reversed-phase high-performance liquid chromatography (HPLC) with a fluorescence detector. The detection limits for this method were estimated to be 0.2 and 1.0 ng/g in bovine muscle and liver, respectively. The mean recoveries spiked in muscle at 2 ng/g and in liver at 10 ng/g were over 80%.  相似文献   

14.
In this study, a high-performance liquid chromatographic method was developed for the quantitative determination of erythromycin (EM), roxithromycin (RXM), and azithromycin (AZM) in rat plasma with amperometric detection under a standardized common condition using clarithromycin (CAM) as an internal standard. This method was also proved to be applicable for the determination of CAM by employing RXM as an internal standard. Each drug was extracted from 150 μl of plasma sample spiked with internal standard under an alkaline condition with tert.-butyl methyl ether. The detector cell potential for the oxidation of the drugs was set at +950 mV. The linearity of the calibration curves were preserved over the concentration ranges of 0.1–10 μg/ml for EM and RXM, and 0.03–3.0 μg/ml for CAM and AZM. Coefficients of variation and relative error were less than 9% and ±7%, respectively. The analytical method presented here was proved to be useful for the investigation of the pharmacokinetic characteristics of EM, CAM, RXM, and AZM in rats.  相似文献   

15.
The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.  相似文献   

16.
When measuring fentanyl and midazolam simultaneously in the same plasma sample with standard high-performance liquid chromatography–ultraviolet (HPLC–UV) detection, overlap of the fentanyl peak by the midazolam peak occurs, which makes fentanyl determination impossible. We tested the hypothesis that by acidifying the methanol mobile phase with 0.02% perchloric acid, 70%, it would be possible to separate both peaks. The UV detector was set at 200 nm. Calibration curves for fentanyl (range 0–2000 pg/ml) and midazolam (range 0–400 ng/ml) were linear (r>0.99). The detection limits were 200 pg/ml (fentanyl) and 10 ng/ml (midazolam). Precision and accuracy for intra- and inter-assay variability as well as in-line validation with quality control samples (QCS) were acceptable (< 15 and 20%, respectively), except for fentanyl QCS of 200 pg/ml (17.8% precision). Although less sensitive than gas chromatography–mass spectrometry (GC–MS), reliable measurements of fentanyl, simultaneously with midazolam, can be performed with this HPLC–UV system.  相似文献   

17.
A sensitive and specific high-performance liquid chromatographic (HPLC) assay has been developed for the quantification of 2-methoxyphenylmetyrapone (2-MPMP) and its seven potential metabolites in rat urine and whole blood. 2-MPMP, 2-hydroxyphenylmetyrapone and their N-oxides, together with 2-methoxyphenylmetyrapol, 2-hydroxyphenylmetyrapol and their N-oxides were separated on an Isco Spherisorb ODS-2 reversed-phase column (250×4.6 mm, I.D., 5 μm), with an Isco Spherisorb ODS-2 guard cartridge (10×4.6 mm I.D.). A gradient elution was employed using solvent system A (acetonitrile–water–triethylamine–acetic acid, 27.3:69.1:0.9:2.7%, v/v) and solvent system B (methanol), the gradient program being as follows: initial 0–4 min A:B=74:26; 4–10 min linear change to A:B=50:50; 10–16 min maintain A:B=50:50; 16 min return to initial conditions (A:B=74:26). Flow-rate was maintained at 1.25 ml/min, and the eluent monitored using a diode array multiple wavelength UV detector set at 260 nm. Most of the analytes were baseline resolved, and analysis of samples recovered from blood or urine (pH 12, 3×5 ml of dichloromethane, recovery 20–95%) revealed no interference from any co-extracted endogenous compounds in the biological matrices, except for 2-hydroxyphenylmetyrapol N-oxide (2-OHPMPOL-NO) at low concentrations. The calibrations (n=6) were linear (r≥0.996) for all analytes (0.5–100 μg/ml), with acceptable inter- and intra-day variability. Subsequent validation of the assay revealed acceptable precision, as measured by coefficient of variation (C.V.) at the low (0.5 mg/ml), medium (50 μg/ml) and high (100 μg/ml) concentrations. The limits of detection for 2-MPMP and their available potential metabolites, except 2-OHPMPOL-NO, in rat urine and blood were both 0.5 μg/ml, respectively.  相似文献   

18.
To monitor the levels of caffeic acid in rat blood, an on-line microdialysis system coupled with liquid chromatography was developed. The microdialysis probe was inserted into the jugular vein/right atrium of male Sprague-Dawley rats. Caffeic acid (100 mg/kg, i.v.) was then administered via the femoral vein. Dialysates were automatically injected onto a liquid chromatographic system via an on-line injector. Samples were eluted with a mobile phase containing methanol–100 mM monosodium phosphoric acid (35:65, v/v, pH 2.5). The UV detector wavelength was set at 320 nm. The detection limit of caffeic acid was 20 ng/ml. The in vivo recoveries of the microdialysis probe for caffeic acid at 0.5 and 1 μg/ml were 48.34±2.68 and 47.64±3.43%, respectively (n=6). Intra- and inter-assay accuracy and precision of the analyses were ≤10% in the range of 0.05 to 10 μg/ml. Pharmacokinetics analysis of results obtained using such a microdialysis–chromatographic method indicated that unbound caffeic acid in the rat fitted best to a biexponential decay model.  相似文献   

19.
In the present study, we investigated the hepatoprotective potential of Parinari curatellifolia Planch (Chrysobalanaceae) in experimental rats in order to ascertain the validity of folkloric claims of its effectiveness in the treatment of hepatic-related disorders. Flavonoid extract of P. curatellifolia seed, PCF (10-, 20- or 30 mg/kg body weight) or silymarin (25 mg/kg), dissolved in corn oil, was administered by gavage to experimental animals once daily for 14 consecutive days before liver damage was chemically induced through the administration of acetaminophen (2 g/kg p.o.) on the 14th day. Hepatoprotection was assessed by analyzing liver homogenate and serum for markers of hepatotoxicity – alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities as well as prothrombin time (PT). Evaluation of biochemical indices of oxidative stress – level of lipid peroxides (LPO), activities of superoxide dismutase (SOD) and catalase, along with histological assessment of hepatic tissue sections were also carried out. Results revealed that all doses of PCF significantly (P < 0.001) and dose dependently prevented acetaminophen-induced increase in serum activities of hepatic enzymes (ALT, AST, GGT, LDH) and PT. Furthermore, PCF (10- and 20 mg/kg) significantly (P < 0.001) reduced lipid peroxidation in liver tissue and restored the activities of the antioxidant enzymes SOD and catalase toward normal levels. Histopathology of the liver tissue showed that PCF mitigated the toxicant-induced hepatocellular necrosis, reduced inflammatory cell infiltration and enhanced hepatocyte regeneration. The results indicated that P. curatellifolia flavonoids demonstrated remarkable hepatoprotective activity in acute liver injury caused by acetaminophen.  相似文献   

20.
We developed and characterized a high-performance liquid chromatographic assay for the determination of nelfinavir (NFV), a potent HIV protease inhibitor, and its active metabolite M8 in human plasma. Extraction of the internal standard, M8 and NFV from the plasma buffered at pH 9.5 was achieved by a liquid–liquid extraction with a mixture of methyl-tert.-butyl ether and hexane. Following two washes of the reconstituted sample with hexane, separation was achieved on an octadecylsilyl analytical column with a mobile phase containing 0.1% trifluoroacetic acid–acetonitrile–methanol (51:46:5, v/v). Detection was performed using an ultraviolet photodiode-array detector. The signal was monitored at a wavelength of 220 nm. The assay was found to be linear and has been validated over the concentration range of 25 to 3000 μg/l for M8 and 25 to 6000 μg/l for NFV, from 500 μl of plasma. Recoveries were 98.9% (SD 8.9%), and 100.2% (SD 11.7%) for M8 and NFV, respectively. Concentrations that gave a signal-to-noise ratio of three (15 μg/l for both M8 and NFV) were selected to determine the limit of detection. The lower limit of quantification (25 μg/l for both M8 and NFV) was defined as the concentration for which the relative standard deviation and the percent deviation from the nominal concentration were lower than 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号