首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subfractionation studies showed that cytochrome b(5) (cyt b5), which has been considered to be a typical ER protein, was localized in both the endoplasmic reticulum membrane (ER) and the outer membrane of mitochondria in cauliflower (Brassica olracea) cells and was a component of antimycin A-insensitive NADH-cytochrome c reductase system in both membranes. When cDNA for cauliflower cyt b5 was introduced into mammalian (COS-7) and yeast cells as well as into onion cells, the expressed cytochrome was localized both in the ER and mitochondria in those cells. On the other hand, rat and yeast cyt b5s were specifically localized in the ER membranes even in the onion cells. Mutation experiments showed that cauliflower cyt b5 carries information that targets it to the ER and mitochondria within the carboxy-terminal 10 amino acids, as in the case of rat and yeast cyt b5s, and that replacement of basic amino acids in this region of cauliflower cyt b5 with neutral or acidic ones resulted in its distribution only in the ER. Together with the established findings of the importance of basic amino acids in mitochondrial targeting signals, these results suggest that charged amino acids in the carboxy-terminal portion of cyt b5 determine its location in the cell, and that the same mechanism of signal recognition and of protein transport to organelles works in mammalian, plant, and yeast cells.  相似文献   

2.
J Mitoma  A Ito 《The EMBO journal》1992,11(11):4197-4203
Cytochrome b5 is an integral membrane protein located on the outer surface of the endoplasmic reticulum (ER). This cytochrome is considered to be synthesized on free ribosomes and to be inserted post-translationally into the ER membrane, without participation of a signal recognition particle. To elucidate the signal responsible for targeting of cytochrome b5 to the ER membrane in vivo, DNAs encoding various derivatives of the cytochrome were constructed and introduced into cultured mammalian COS cells, and the subcellular distributions of the derivatives expressed in the cells were then analyzed. The deletion of more than 11 amino acid residues at the carboxy-terminal end of cytochrome b5 abolished the targeting and anchoring of the cytochrome to the ER membrane. Fusion proteins consisting of the carboxy-terminal 10 amino acid residues of cytochrome b5 and passenger proteins with the hydrophobic portion could be localized in the ER membrane. Thus, the last 10 amino acid residues of cytochrome b5 carry information necessary for the cytochrome to be targeted to the ER membrane.  相似文献   

3.
The major 70-kd protein of the yeast mitochondrial outer membrane is made on cytosolic ribosomes and imported into the outer membrane without proteolytic cleavage. We have attempted to identify the sequences which target the protein to the mitochondria and which permanently anchor it to the lipid bilayer of the outer membrane. By manipulating the cloned gene we have deleted 13 different regions throughout the polypeptide; in addition, we have fused amino-terminal regions of different length to beta-galactosidase. Each altered gene was introduced into yeast and the intracellular fate of the corresponding polypeptide product was determined by subcellular fractionation. All the information for targeting and anchoring the 70-kd protein (617 amino acids) was contained within the amino-terminal 41 amino acids. When this entire region was deleted, the protein was recovered with the cytosol fraction. However, several restricted deletions within this amino-terminal region appeared to affect targeting and anchoring differentially: most of the altered protein remained in the cytosol but a small fraction was misrouted into the mitochondrial matrix space. We suggest that targeting is mediated by a region which includes the 11 amino-terminal amino acids whereas the permanent membrane anchor is provided by a typical transmembrane sequence between residues 9 and 38.  相似文献   

4.
Monoamine oxidase B, a typical intrinsic protein of the outer mitochondrial membrane, has an uncleavable targeting signal and is inserted into the membrane without proteolytic maturation. To investigate the region responsible for targeting the enzyme to the outer mitochondrial membrane, various mutated proteins were expressed in cultured mammalian cells, and the distributions of the expressed proteins were analyzed by immunofluorescence microscopy and subcellular fractionation. Deletion of the carboxy-terminal 28 amino acids of monoamine oxidase B abolished the transfer of the enzyme to mitochondria, while the deletion of the amino-terminal 55 amino acids had no effect on the transfer to mitochondria. The existence of the targeting signal at the carboxy-terminal portion of the enzyme was confirmed by using hybrid proteins in which the amino- or carboxy-terminal portion of the enzyme was fused to the hydrophilic portion of cytochrome b5. The fused protein with the carboxy-terminal 29 amino acid residues of monoamine oxidase B was localized in mitochondria, whereas that with 10 amino acids remained in the cytoplasm. These results indicate that the targeting signal of monoamine oxidase B is present within its carboxy-terminal 29 amino acid residues.  相似文献   

5.
Many eukaryotic cell surface proteins are bound to the membrane via the glycosylphosphatidylinositol (GPI) anchor that is covalently linked to their carboxy-terminus. The GPI anchor precursor is synthesized in the endoplasmic reticulum (ER) and post-translationally linked to protein. We cloned a human gene termed PIG-B (phosphatidylinositol glycan of complementation class B) that is involved in transferring the third mannose. PIG-B encodes a 554 amino acid, ER transmembrane protein with an amino-terminal portion of approximately 60 amino acids on the cytoplasmic side and a large carboxy-terminal portion of 470 amino acids within the ER lumen. A mutant PIG-B lacking the cytoplasmic portion remains active, indicating that the functional site of PIG-B resides on the lumenal side of the ER membrane. The PIG-B gene was localized to chromosome 15 at q21-q22. This autosomal location would explain why PIG-B is not involved in the defective GPI anchor synthesis in paroxysmal nocturnal hemoglobinuria, which is always caused by a somatic mutation of the X-linked PIG-A gene.  相似文献   

6.
When sucrose-dependent spectinomycin-resistant (Sucd-Spcr) mutants of Escherichia coli were grown in the absence of sucrose, a new protein appeared in the membrane fraction insoluble in Triton X-100. The protein had a hydrophobic nature. However, unlike other outer membrane proteins the new protein was extracted with sodium dodecyl sarcosinate. The new protein was found to be identical with elongation factor Tu (EF-Tu), as judged from the electrophoretic mobility in three different gel systems, coprecipitation with the antiserum against EF-Tu, the profiles of peptide fragments produced with three different proteases and analyses of N-terminal and C-terminal amino acids. This membrane EF-Tu accounted for 5-10% of total cell EF-Tu. When spheroplasts were pretreated with trypsin, EF-Tu in the outer membrane disappeared. Incubation of cytosol EF-Tu with the outer membrane did not result in the binding of EF-Tu to the membrane. These results indicate that the appearance of EF-Tu in the outer membrane is not due to artificial binding during membrane preparation. It is suggested that the ribosomal alteration resulted in dislocation of the cytosol protein into the outer membrane.  相似文献   

7.
The enzyme 5-lipoxygenase (5-LO) catalyzes the first two steps in the metabolism of arachidonic acid to leukotrienes, substances which play pivotal roles both in normal host defense and in pathologic states of inflammation. Recent studies in granulocytic cells have shown that activation of 5-LO involves its Ca(2+)-dependent translocation from cytosol to membrane compartments. However, little information exists about the molecular regulation of 5-LO in macrophages, even though these cells comprise the resident effector cell population of most organs. We therefore examined the levels of 5-LO activity and immunoreactive protein in cytosol and membrane fractions of resident rat alveolar (AM) and peritoneal macrophages (PM) and compared them with the well studied human neutrophil (polymorphonuclear leukocyte). In the resting state, PM resembled polymorphonuclear leukocyte in that most of their cell-free 5-LO activity, as well as protein content, were localized to the cytosol fraction. By contrast, resting AM contained most of their activity and almost half of their immunoreactive protein in the crude membrane fraction. The inability of the drug MK-886 to reverse this membrane association suggested that the 5-LO-activating protein was not the site of binding in the resting cell; however, this drug completely inhibited leukotriene B4 synthesis in ionophore A23187-stimulated AM, indicating that an interaction between 5-LO and 5-LO-activating protein was nonetheless required for product synthesis upon stimulation. Translocation of cytosolic 5-LO protein could not be convincingly demonstrated in A23187-stimulated AM, suggesting that the pool of 5-LO enzyme responsible for product formation originated in the membrane rather than the cytosol fraction of the resting cell. The AM therefore represents the first mammalian cell in which 5-LO has been recovered from the membrane fraction (a) of a resting cell and (b) in active form. These novel findings extend our understanding of the molecular regulation of 5-LO and may be of importance in designing strategies to limit inflammation in the lung and other sites.  相似文献   

8.
rab5 controls early endosome fusion in vitro   总被引:110,自引:0,他引:110  
J P Gorvel  P Chavrier  M Zerial  J Gruenberg 《Cell》1991,64(5):915-925
The small GTP-binding protein rab5 was previously localized on early endosomes and on the cytoplasmic face of the plasma membrane. Using a cell-free assay, we have now tested whether rab5 is involved in controlling an early endocytic fusion event. Fusion could be inhibited by cytosol containing the overexpressed mutant rab5lle133, which does not bind GTP on blots, and by antibodies against rab5, but not against rab2 or rab7. In contrast, fusion was stimulated with cytosol containing overexpressed wild-type rab5. Cytosols containing high levels of rab2 or mutant rab5 with the 9 carboxy-terminal amino acids deleted, which bind GTP on blots, had no effects. Finally, the inhibition mediated by anti-rab5 antibodies could be overcome by complementing the assay with the cytosol containing wild-type rab5, but not with the same cytosol depleted of rab5, nor with cytosol containing the rab5 mutants or rab2. These in vitro findings strongly suggest that rab5 is involved in the process of early endosome fusion.  相似文献   

9.
Lu SX  Hrabak EM 《Plant physiology》2002,128(3):1008-1021
Arabidopsis contains 34 genes that are predicted to encode calcium-dependent protein kinases (CDPKs). CDPK enzymatic activity previously has been detected in many locations in plant cells, including the cytosol, the cytoskeleton, and the membrane fraction. However, little is known about the subcellular locations of individual CDPKs or the mechanisms involved in targeting them to those locations. We investigated the subcellular location of one Arabidopsis CDPK, AtCPK2, in detail. Membrane-associated AtCPK2 did not partition with the plasma membrane in a two-phase system. Sucrose gradient fractionation of microsomes demonstrated that AtCPK2 was associated with the endoplasmic reticulum (ER). AtCPK2 does not contain transmembrane domains or known ER-targeting signals, but does have predicted amino-terminal acylation sites. AtCPK2 was myristoylated in a cell-free extract and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In plants, the G2A mutation decreased AtCPK2 membrane association by approximately 50%. A recombinant protein, consisting of the first 10 amino acids of AtCPK2 fused to the amino-terminus of beta-glucuronidase, was also targeted to the ER, indicating that the amino terminus of AtCPK2 can specify ER localization of a soluble protein. These results indicate that AtCPK2 is localized to the ER, that myristoylation is likely to be involved in the membrane association of AtCPK2, and that the amino terminal region of AtCPK2 is sufficient for correct membrane targeting.  相似文献   

10.
1. Slices of lactating guinea-pig mammary gland were incubated with radioactive amino acids and the various subcellular fractions separated by centrifugation after disruption of the cells by mincing and homogenization. The most active fraction for protein synthesis appeared to be the `mitochondrial'. 2. When the subcellular fractions were prepared without previous incubation of the cells and were then incubated with radioactive amino acid and an energy-generating system, the `mitochondrial fraction' was at least as active for protein synthesis as the `microsomal fraction'. 3. The ribosomes in the microsomal fraction are mainly unattached to membrane whereas those in the mitochondrial fraction are probably attached to fragments of the rough-surfaced endoplasmic reticulum. This latter fraction contains few mitochondria. 4. The combined mitochondrial and microsomal fractions incorporated radioactive amino acids into α-lactalbumin. 5. The radioactive leucine isolated from tryptic and chymotryptic peptides of α-lactalbumin synthesized in the cell-free system was not of uniform specific radioactivity. This was consistent with the polypeptide being assembled by the sequential addition of amino acids. 6. Evidence is presented for the polypeptide chain of α-lactalbumin being assembled from the N-terminus and for chain initiation in the cell-free system. 7. It is concluded that cell-free extracts of lactating mammary gland synthesize α-lactalbumin.  相似文献   

11.
《The Journal of cell biology》1996,135(6):1501-1513
N-myristoylation is a cotranslational modification involved in protein- protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2- terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting.  相似文献   

12.
The precursor protein of von Willebrand factor (pro-vWF) consists of four different repeated domains, denoted D1-D2-D'-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2, followed by a carboxy-terminal region of 151 amino acids without obvious internal homology. Previously, we have shown the requirement of the domains D1, D2, D', and D3 of pro-vWF in the assembly of pro-vWF dimers into multimers. Here, we define the domains of vWF involved in dimerization, using deletion mutants of full-length vWF cDNA transiently expressed in monkey kidney COS-1 cells. It is shown that only the carboxy-terminal 151 amino acid residues of vWF are required for dimerization. In addition, by analyzing a construct, encoding only the carboxy-terminal 151 amino acids of vWF, we find that the formation of dimers is an event independent of other domains present on pro-vWF, such as the domains C1 and C2 previously suggested to be involved in dimerization. Furthermore, it is shown that a deletion mutant of vWF, lacking the carboxy-terminal 151 amino acid residues and thus unable to dimerize, is proteolytically degraded in the ER. In contrast, a mutant protein, composed only of the carboxy-terminal 151 amino acids of vWF, and able to dimerize, is transported from the ER in a similar fashion as wild-type vWF. The role of the ER in the assembly of vWF is discussed with regard to the data presented in this paper on the intracellular fate of several vWF mutant proteins.  相似文献   

13.
14.
Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b(5), a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.  相似文献   

15.
Stimulation of apoptosis by p53 is accompanied by induction of the BH-3-only proapoptotic member of the BCL-2 family, BIK, and ectopic expression of BIK in p53-null cells caused the release of cytochrome c from mitochondria and activation of caspases, dependent on a functional BH-3 domain. A significant fraction of BIK, which contains a predicted transmembrane segment at its COOH terminus, was found inserted in the endoplasmic reticulum (ER) membrane, with the bulk of the protein facing the cytosol. Restriction of BIK to this membrane by replacing its transmembrane segment with the ER-selective membrane anchor of cytochrome b(5) also retained the cytochrome c release and cell death-inducing activity of BIK. Whereas induction of cell death by BIK was strongly inhibited by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, the inhibitor was without effect on the ability of BIK to stimulate egress of cytochrome c from mitochondria. This benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone-insensitive pathway for stimulating cytochrome c release from mitochondria by ER BIK was successfully reconstituted in vitro and identified the requirement for components present in the light membrane (ER) and cytosol as necessary for this activity. Collectively, the results identify BIK as an initiator of cytochrome c release from mitochondria operating from a location at the ER.  相似文献   

16.
The rotavirus non-structural glycoprotein (NS28), the receptor for the virus core during budding into the lumen of the rough endoplasmic reticulum (RER), is 175 amino acids long and possesses an uncleaved signal sequence and two amino-terminal glycosylation sites. Utilizing one of three potential hydrophobic domains, the protein spans the membrane only once, with the glycosylated amino-terminal region oriented to the luminal side of the ER and the carboxy-terminal region to the cytoplasmic side. To localize sequences involved in translocation of NS28, we constructed a series of mutations in the coding regions for the hydrophobic domains of the protein. Mutant protein products were studied by in vitro translation and by transfection in vivo. In transfected cells, all mutant forms localize to the ER, and none are secreted. In vitro, each of the three hydrophobic domains is able to associate with microsomes. However, glycosylation and proteolysis of wild-type and mutant forms of NS28 indicates that the wild-type protein is anchored in the membrane only by the second hydrophobic domain, leaving approximately 131 residues exposed on the cytoplasmic side for receptor - ligand interaction.  相似文献   

17.
The most abundant Epstein-Barr virus mRNA in a latently infected cell line, IB4, established by in vitro growth transformation with virus, was a 2,8-kilobase RNA encoded by largely unique DNA near the right end of the genome. The RNA was transcribed from right to left, and two introns were spliced out. This region of the genome was sequenced, and the exons of the RNA were identified by S1 analysis of DNA-RNA hybrids and primer extension. The first start codon in the RNA was 40 nucleotides from its 5' end. Beginning with the start codon, there was a 1,158-nucleotide open reading frame which crossed both introns. The important characteristics of the translated protein were as follows. (i) The amino terminus was highly charged and not suggestive of a leader sequence. (ii) There were six markedly hydrophobic alpha-helical domains, each having 21 amino acids and connected by 5 to 7 amino acid segments predicted to be reverse turns. (iii) The carboxy-terminal 200 amino acids were markedly acidic, containing 6 glutamic and 37 aspartic acids. The hydrophobic region is predicted to form six membrane-spanning regions, leaving the short charged amino terminus and long acidic carboxy terminus on the inside of the membrane. This protein could be responsible for the new antigen detected in the plasma membrane of Epstein-Barr virus-transformed cells, lymphocyte-determined membrane antigen. There were two other open reading frames in the RNA.  相似文献   

18.
G Gil  J R Faust  D J Chin  J L Goldstein  M S Brown 《Cell》1985,41(1):249-258
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) is a single polypeptide chain with two contiguous domains: a soluble domain (548 amino acids) that catalyzes the rate-controlling step in cholesterol synthesis and a membrane-bound domain (339 amino acids) that anchors the protein to the endoplasmic reticulum (ER). HMG CoA reductase is degraded at least 10-fold more rapidly than other ER proteins; degradation is accelerated in the presence of cholesterol. To understand this controlled degradation, we transfected reductase-deficient Chinese hamster ovary (CHO) cells with a plasmid expression vector containing a reductase cDNA that lacks the segment encoding the membrane domain. The plasmid produced a truncated reductase (37 kd smaller than normal) that was enzymatically active with normal kinetics; most of the truncated enzyme was found in the cytosol. The truncated enzyme was degraded one-fifth as fast as the holoenzyme; degradation was no longer accelerated by sterols. We conclude that the membrane-bound domain of reductase plays a crucial role in the rapid and regulated degradation of this ER protein.  相似文献   

19.
The multifunctional 2b protein of CMV has a role in the long distance and local movement of the virus, in symptom formation, in evasion of defense mediated by salicylic acid as well as in suppression of RNA silencing. The role of conserved amino acid sequence domains were analyzed previously in the protein function, but comprehensive analysis of this protein was not carried out until recently. We have analyzed all over the 2b protein by alanine scanning mutagenesis changing three consecutive amino acids (aa) to alanine. We have identified eight aa triplets as key determinants of the 2b protein function in virus infection. Four of them (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA) overlap with previously determined regions indispensable in gene silencing suppressor function. We have identified two additional triplets necessary for the suppressor function of the 2b protein (LPF/55-57/AAA, NVE/10-12/AAA), and two other positions were required for cell-to-cell movement of the virus (MEL/1-3/AAA, RHV/70-72/AAA), which are not essential for suppressor activity.  相似文献   

20.
The estrogen receptor (ER) is a rapidly turning over protein, with a half-life of ca. 3–4 h in estrogen target cells. Sequence analysis of the human ER reveals a putative PEST sequence, sequences rich in proline (P), glutamic acid (E), serine (S) and threonine (T), in the carboxy-terminal F domain of the protein. Since PEST sequences have been implicated in the rapid turnover of some proteins, we have used site-directed mutagenesis to investigate the role of the F region containing PEST residues in the stability and bioactivity of the receptor. A truncated form of ER lacking the last 41 amino acids of the protein and encompassing the PEST sequences (amino acids 555 to 567) was made by mutagenesis of the ER cDNA. Pulse-chase experiments, involving immunoprecipitation of [35S]methionine/[35]Scysteine labeled receptors or of receptors covalently labeled with tamoxifen aziridine followed by gel electrophoresis, were used to determine the half-life of the wild-type and truncated ERs. These experiments showed that the turnover rate of the receptors expressed in Chinese hamster ovary and monkey kidney (COS-1) cells was 3 to 5 h and that elimination of the PEST residues did not have a significant effect on the degradation rate of the protein. Moreover, deletion of the last 41 amino acids (F domain) of the ER did not affect transactivation ability, ligand binding affinity, or the phosphorylation pattern of the receptor. Therefore, the role of domain F in ER function remains unclear, but it is not a determinant of the relatively rapid rate of ER turnover in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号