首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the unperturbed development of the mouse embryo one of the 2-cell blastomeres tends to contribute its progeny predominantly to the embryonic and the other to the abembryonic part of the blastocyst. However, a significant minority of embryos (20-30%) do not show this correlation. In this study, we have used non-invasive lineage tracing to determine whether development of blastocyst pattern shows any correlation with the orientation and order of the second cleavage divisions that result in specific positioning of blastomeres at the 4-cell stage. Although the orientation and order of the second cleavages are not predetermined, in the great majority (80%) of embryos the spatial arrangement of 4-cell blastomeres is consistent with one of the second cleavages occurring meridionally and the other equatorially or obliquely with respect to the polar body. In such cleaving embryos, one of the 2-cell stage blastomeres tends to contribute to embryonic while the other contributes predominantly to abembryonic part of the blastocyst. Thus, in these embryos the outcome of the first cleavage tends to correlate with the orientation of the blastocyst embryonic-abembryonic axis. However, the order of blastomere divisions predicts a specific polarity for this axis only when the earlier 2-cell blastomere to divide does so meridionally. In contrast to the above two groups, in those embryos in which both second cleavage divisions occur in a similar orientation, either meridionally or equatorially, we do not observe any tendency for the 2-cell blastomeres to contribute to specific blastocyst parts. We find that all these groups of embryos develop to term with similar success, with the exception of those in which both second cleavage divisions occur equatorially whose development can be compromised. We conclude that the orientations and order of the second cleavages are not predetermined; they correlate with the development of blastocyst patterning; and that the majority, but not all, of these cleavage patterns allow equally successful development.  相似文献   

2.
In many animal species, the early development of the embryo follows a stereotypic pattern of cell cleavage, lineage allocation and generation of tissue asymmetry leading to delineation of the body plan with three primary embryonic axes. The mammalian embryo has been regarded as an exception and primary body axes of the mouse embryo were thought to develop after implantation. However, recent findings have challenged this view. Asymmetry in the fertilised oocyte, as defined by the position of the second polar body and the sperm entry point, can be correlated with the orientation of the animal-vegetal and the embryonic-abembryonic axes in the preimplantation blastocyst. Studies of the pattern of morphogenetic movement of cells and genetic activity in the peri-implantation embryo suggest that the animal-vegetal axis of the blastocyst might presage the orientation of the anterior-posterior axis of the gastrula. This suggests that the asymmetry of the zygote that is established at fertilisation and early cleavage has a lasting impact on the delineation of body axes during embryogenesis.  相似文献   

3.
The optimal oxygen tension for development of preimplantation mouse embryos to the blastocyst stage in vitro was found to be between 2.5% and 5%. One- and two-cell embryos had a more sharply defined range of oxygen tension capable of supporting development than 8-cell and morula stages. At all stages of development, more embryos developed to the blastocyst stage under 5% O2 compared to the numbers of developing under higher oxygen tensions (20% and 40% O2). The blastocysts developing under 20% O2 had fewer blastomeres than those which developed under 5% O2. As the time required for development to the blastocyst stage in vitro increased, there were fewer blastomeres present at the blastocyst stage. These results indicate that the cleaving mouse embryo has an optimal oxygen requirement in vitro of about 5%. At higher oxygen tensions, fewer embryos develop to the blastocyst stage and in those which do develop, there are fewer cell divisions. If a gradient of oxygen tension exists across the blastomeres from the outside of the embryo to its centre, the blastomeres might be using this gradient to obtain imformation about their location within the embryo and respond accordingly. Thus blastomeres on the outside at a higher oxygen tension would divide at a slower rate and form trophectoderm whereas those on the inside at a lower oxygen tension would divide more rapidly and contribute to the inner cell mass.  相似文献   

4.
Two independent studies have recently suggested similar models in which the embryonic and abembryonic parts of the mouse blastocyst become separated already by the first cleavage division. However, no lineage tracing studies carried out so far on early embryos provide the support for such a hypothesis. Thus, to re-examine the fate of blastomeres of the two-cell mouse embryo, we have undertaken lineage tracing studies using a non-perturbing method. We show that two-cell stage blastomeres have a strong tendency to develop into cells that comprise either the embryonic or the abembryonic parts of the blastocyst. Moreover, the two-cell stage blastomere that is first to divide will preferentially contribute its progeny to the embryonic part. Nevertheless, we find that the blastocyst embryonic-abembryonic axis is not perfectly orthogonal to the first cleavage plane, but often shows some angular displacement from it. Consequently, there is a boundary zone adjacent to the interior margin of the blastocoel that is populated by cells derived from both earlier and later dividing blastomeres. The majority of cells that inhabit this boundary region are, however, derived from the later dividing two-cell stage blastomere that contributes predominantly to the abembryonic part of the blastocyst. Thus, at the two-cell stage it is already possible to predict which cell will contribute a greater proportion of its progeny to the abembryonic part of the blastocyst (region including the blastocyst cavity) and which to the embryonic part (region containing the inner cell mass) that will give rise to the embryo proper.  相似文献   

5.
Reproductive cell specification during Volvox obversus development   总被引:1,自引:0,他引:1  
Asexual spheroids of the genus Volvox contain only two cell types: flagellated somatic cells and immotile asexual reproductive cells known as gonidia. During each round of embryogenesis in Volvox obversus, eight large gonidial precursors are produced at the anterior extremity of the embryo. These cells arise as a consequence of polarized, asymmetric divisions of the anteriormost blastomeres at the fourth through nine cleavage cycles, while all other blastomeres cleave symmetrically to yield somatic cell precursors. Blastomeres isolated from embryos at any point between the 2-cell and the 32-cell stage cleaved in the normal pattern and produced the same complement and spatial distribution of cell types as they would have in an intact embryo. This result indicates that intrinsic features control the cleavage patterns and developmental potentials of blastomeres, and rules out any significant role for cell-cell interactions in gonidial specification. When substantial quantities of anterolateral cytoplasm were deleted from uncleaved gonidia or 4-cell stage blastomeres, the cell fragments frequently regulated and embryos were produced with the expected number of asymmetrically cleaving cells and gonidial precursors at their anterior ends. However, when anterior cytoplasm was deleted from 8-cell stage blastomeres, the depleted cells frequently failed to cleave asymmetrically and produced no gonidial precursors. Furthermore, when compression was used to reorient cleavage planes at the fourth division cycle, so that anterior cytoplasm was transmitted to more than the normal number of cells, those cells receiving a significant amount of such cytoplasm cleaved asymmetrically to produce supernumerary gonidial precursors. Together, these last two experiments indicate that blastomeres in the V. obversus embryo acquire (at least by the end of the third cleavage cycle) a polarized organization in which anterior cytoplasm plays a causal role in the process of reproductive-cell specification.  相似文献   

6.
Recent studies suggest early (preimplantation) events might be important in the development of polarity in mammalian embryos. We report here lineage tracing experiments with green fluorescent protein showing that cells located either near to or opposite the polar body at the 8-cell stage of the mouse embryo retain their same relative positions in the blastocyst. Thus they come to lie on either end of an axis of symmetry of the blastocyst that has recently been shown to correlate with the anterior-posterior axis of the postimplantation embryo (see R. J. Weber, R. A. Pedersen, F. Wianny, M. J. Evans and M. Zernicka-Goetz (1999). Development 126, 5591-5598). The embryonic axes of the mouse can therefore be related to the position of the polar body at the 8-cell stage, and by implication, to the animal-vegetal axis of the zygote. However, we also show that chimeric embryos constructed from 2-cell stage blastomeres from which the animal or the vegetal poles have been removed can develop into normal blastocysts and become fertile adult mice. This is also true of chimeras composed of animal or vegetal pole cells derived through normal cleavage to the 8-cell stage. We discuss that although polarity of the postimplantation embryo can be traced back to the 8-cell stage and in turn to the organisation of the egg, it is not absolutely fixed by this time.  相似文献   

7.
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.  相似文献   

8.
Starfish blastomeres are reported to be totipotent up to the 8-cell stage. We reinvestigated the development of blastomeres of 8-cell stage embryos with a regular cubic shape consisting of two tiers of 4 blastomeres. On dissociation of the embryo by disrupting the fertilization membrane at the 8-cell stage, each of the 4 blastomeres of the vegetal hemisphere gave rise to an embryo that gastrulated, whereas blastomeres from the animal hemisphere did not. By injection of a cell lineage tracer into blastomeres of 8-cell stage embryos, we found that only those of the vegetal hemisphere formed cells constituting the archenteron. Next, we compressed 4-cell stage embryos along the animal-vegetal axis so that all the blastomeres in the 8-cell stage were in a single layer. When these 8 blastomeres were then dissociated, an average of 7 of them developed into gastrulae. By cell lineage analysis, all the blastomeres in single-layered embryos at the 8-cell stage were shown to have the capacity to form cells constituting an archenteron. Taken together, these findings indicate that the fate to form the archenteron is specified by a cytoplasmic factor(s) localized at the vegetal hemisphere, and that isolated blastomeres that have inherited this factor develop into gastrulae.  相似文献   

9.
A fertilised Caenorhabditis elegans embryo shows an invariable pattern of cell division and forms a multicellular body where each cell locates to a defined position. Mitotic spindle orientation is determined by several preceding events including the migration of duplicated centrosomes on a nucleus and the rotation of nuclear-centrosome complex. Cell polarity is the dominant force driving nuclear-centrosome rotation and setting the mitotic spindle axis in parallel with the polarity axis during asymmetric cell division. It is reasonable that there is no nuclear-centrosome rotation in symmetrically dividing blastomeres, but the mechanism(s) which suppress rotation in these cells have been proposed because the rotations occur in some polarity defect embryos. Here we show the nuclear-centrosome rotation can be induced by depletion of RPN-2, a regulatory subunit of the proteasome. In these embryos, cell polarity is established normally and both asymmetrically and symmetrically dividing cells are generated through asymmetric cell divisions. The nuclear-centrosome rotations occurred normally in the asymmetrically dividing cell lineage, but also induced in symmetrically dividing daughter cells. Interestingly, we identified RPN-2 as a binding protein of PKC-3, one of critical elements for establishing cell polarity during early asymmetric cell divisions. In addition to asymmetrically dividing cells, PKC-3 is also expressed in symmetrically dividing cells and a role to suppress nuclear-centrosome rotation has been anticipated. Our data suggest that the expression of RPN-2 is involved in the mechanism to suppress nuclear-centrosome rotation in symmetrically dividing cells and it may work in cooperation with PKC-3.  相似文献   

10.
11.
This study was designed to assess the degree of cell mixing that occurs during the early development of the mouse embryo, and thus provide information which is important in relation to the current theories of differentiation. Previous studies of this nature have involved either chimeric composites, or have only followed a very limited number of cells in the embryo. Here the products of one of the 4-cell stage blastomeres have been labeled with tritiated thymidine, at a level which allows their descendants to be identified three or four cell divisions later, and recombined with the remaining blastomeres of the same embryo. After fixing and sectioning of the embryos at the blastocyst stage the locations of the labelled cells have been analyzed to assess the degree of clumping that they display. A significant tendency for the products of this one 4-cell stage blastomere to be confined to a single area in the blastocyst is demonstrated. This indicates that there is little marked cell movement during the observation period. The relevance of these results to current knowledge of blastocyst development is discussed.  相似文献   

12.
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.  相似文献   

13.
The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma.  相似文献   

14.
不对称分裂在动植物的发育中起到了非常重要的作用。Caenorhabditis elegans(C.elegans)胚胎最早的两次卵裂为研究控制不对称分裂的机制提供了很好的机会。用普通光学显微镜观察了野生型胚胎早期卵裂和par-1、par-2、par-3、par-4突变体胚胎的早期卵裂。野生型胚胎最早的分裂是不等的,产生了两个不同大小的子细胞。两个子细胞又以不同的方向进行第二次分裂。在C.elegans中任意一个par基因的缺失会使胚胎的第一次卵裂丧失不对称性。这会导致一些发育调控因子不能在特定的胚胎细胞中准确地定位,造成细胞分裂纺锤体方向的异常。par类基因参与不对称性的建立,这种不对称性决定了C.elegans身体的前后轴。  相似文献   

15.
The influence of cell division order on the establishment of the embryonic-abembryonic axis (EA axis) of the mouse embryo was investigated. Aggregate embryos were constructed in which a labelled cell (or pair of cells) was combined with a group of unlabelled cells all of which were up to one cell cycle earlier or later in their progress through development to the blastocyst stage. The aggregates were cultured first to the nascent blastocyst stage and then to the expanded blastocyst stage. The positions of the progeny of the labelled cells in relation to the nascent blastocoel and to the orientation of the embryonic-abembryonic axis were recorded. It was concluded that cell division order does influence the establishment of the EA axis, early dividing cells tending to be associated with the nascent blastocoel and the site of the nascent blastocoel tending to mark the site of the abembryonic pole. However, the influence of division order was diminished by a requirement for intercellular cooperation during blastocoel formation and by a counteracting influence of division order arising from its effects on the allocation of cells to the inner cell mass.  相似文献   

16.
We investigated the early development of the sea anemone Nematostella vectensis, an emerging model system of the Cnidaria. Early cleavage stages are characterized by substantial variability from embryo to embryo, yet invariably lead to the formation of a coeloblastula. The coeloblastula undergoes a series of unusual broad invaginations-evaginations which can be blocked by cell cycle inhibitors suggesting a causal link of the invagination cycles to the synchronized cell divisions. Blastula invagination cycles stop as cell divisions become asynchronous. Marking experiments show a clear correspondence of the animal-vegetal axis of the egg to the oral-aboral axis of the embryo. The animal pole gives rise to the concave side of the blastula and later to the blastopore of the gastrula, and hence the oral pole of the future polyp. Asymmetric distribution of granules in the unfertilized egg suggest an animal-vegetal asymmetry in the egg in addition to the localized position of the pronucleus. To determine whether this asymmetry reflects asymmetrically distributed determinants along the animal-vegetal axis, we carried out blastomere isolations and embryonic divisions at various stages. Our data strongly indicate that normal primary polyps develop only if cellular material from the animal hemisphere is included, whereas the vegetal hemisphere alone is incapable to differentiate an oral pole. Molecular marker analysis suggests that also the correct patterning of the aboral pole depends on signals from the oral half. This suggests that in Nematostella embryos the animal hemisphere contains organizing activity to form a normal polyp.  相似文献   

17.
Previous fate mapping studies as well as the culture of isolated blastomeres have revealed that the dorsoventral axis is specified as early as the 2-cell stage in the embryos of the direct developing echinoid, Heliocidaris erythrogramma. Normally, the first cleavage plane includes the animal-vegetal axis and bisects the embryo between future dorsal and ventral halves. Experiments were performed to establish whether the dorsoventral axis is set up prior to the first cleavage division in H. erythrogramma. Eggs were elongated and fertilized in silicone tubes of a small diameter in order to orient the cleavage spindle and thus the first plane of cell division. Following first cleavage, one of the two resulting blastomeres was then microinjected with a fluorescent cell lineage tracer dye. Fate maps were made after culturing these embryos to larval stages. The results indicate that the first cleavage division can be made to occur at virtually any angle relative to the animal-vegetal and dorsoventral axes. Therefore, the dorsoventral axis is specified prior to first cleavage. We argue that this axis resides in the unfertilized oocyte rather than being set up as a consequence of fertilization.  相似文献   

18.
In the Drosophila CNS, neuroblasts undergo self-renewing asymmetric divisions, whereas their progeny, ganglion mother cells (GMCs), divide asymmetrically to generate terminal postmitotic neurons. It is not known whether GMCs have the potential to undergo self-renewing asymmetric divisions. It is also not known how precursor cells undergo self-renewing asymmetric divisions. Here, we report that maintaining high levels of Mitimere or Nubbin, two POU proteins, in a GMC causes it to undergo self-renewing asymmetric divisions. These asymmetric divisions are due to upregulation of Cyclin E in late GMC and its unequal distribution between two daughter cells. GMCs in an embryo overexpressing Cyclin E, or in an embryo mutant for archipelago, also undergo self-renewing asymmetric divisions. Although the GMC self-renewal is independent of inscuteable and numb, the fate of the differentiating daughter is inscuteable and numb-dependent. Our results reveal that regulation of Cyclin E levels, and asymmetric distribution of Cyclin E and other determinants, confer self-renewing asymmetric division potential to precursor cells, and thus define a pathway that regulates such divisions. These results add to our understanding of maintenance and loss of pluripotential stem cell identity.  相似文献   

19.
The individual blastomeres of the preimplantation mouse embryo become polarized during the 8-cell stage. Microvilli become restricted to the free surface of the embryo and this region of the membrane shows increased labeling with FITC-Con A and trinitrobenzenesulfonate (TNBS). Previous studies have shown that this polarity develops in response to asymmetric cell-cell contact with stage specific induction competent blastomeres. In the present study, the ability of later stage embryos to induce 8-cell polarization has been investigated. Newly-formed, nonpolar 8-cell stage blastomeres (1/8 cells) were isolated, then aggregated with morulae, inner cell clusters (from morulae), blastocysts, or inner cell masses (ICM) and cultured for 8 hr. Aggregates were then assayed for polarity. The results show a hierarchy of inducing ability, with the ICM and IC cluster possessing greater activity than the morula and polar trophectoderm of the early blastocyst, while the mural trophectoderm shows very little inducing activity. Furthermore, the inducing ability of the polar trophectoderm decreases with complete expansion and hatching of the blastocyst. These results indicate that the ability to induce 8-cell blastomere polarization is retained by the embryo beyond the 8-cell stage and that this ability is lost with further differentiation.  相似文献   

20.
We studied the cellular mechanisms underlying the induction of polarity in individual blastomeres of the 8-cell mouse embryo. The ability to induce polarity is lacking in the membranes of unfertilized and newly fertilized mouse eggs, then develops during the 2-cell stage, and is present in membranes of cells from 4-, 8-, and 16-cell stages. The axis of polarity takes 3-5 h to become established and thereafter appears to be stable. Multiple cell contacts affect the orientation of the axis of polarity, and no polarity develops in cells which are totally surrounded. Polarized cells show evidence of an limited capacity for slight adjustments in their position relative to other cells. The implications of these results for the mechanisms by which a blastocyst is generated are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号