首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homo- and heterodimerization of the opioid receptors with functional consequences were reported previously. However, the exact nature of these putative dimers has not been identified. In current studies, the nature of the heterodimers was investigated by producing the phenotypes of the 1:1 heterodimers formed between the constitutively expressed mu-opioid receptor (MOR) and the ponasterone A-induced expression of delta-opioid receptor (DOR) in EcR293 cells. By examining the trafficking of the cell surface-located MOR and DOR, we determined that these two receptors endocytosed independently. Using cell surface expression-deficient mutants of MOR and DOR, we observed that the corresponding wild types of these receptors could not rescue the cell surface expression of the mutants, whereas the antagonist naloxone could. Furthermore, studies with constitutive or agonist-induced receptor internalization also indicated that MOR and DOR endocytosed independently and could not "drag in" the corresponding wild types or endocytosis-deficient mutants. Additionally, the heterodimer phenotypes could be eliminated by the pretreatment of the EcR293 cells with pertussis toxin and could be modulated by the deletion of the RRITR sequence in the third intracellular loop that is involved in the receptor-G protein interaction and activation. These data suggest that MOR and DOR heterodimerize only at the cell surface and that the oligomers of opioid receptors and heterotrimeric G protein are the bases for the observed MOR-DOR heterodimer phenotypes.  相似文献   

2.
Receptor desensitization by G-protein receptor kinases (GRK) and arrestins is likely to be an important component underlying the development of tolerance to opioid drugs. Reconstitution of this process in Xenopus oocytes revealed distinct differences in the kinetics of GRK and arrestin regulation of the closely related opioid receptors mu (MOR), delta (DOR), and kappa (KOR). We demonstrated that under identical conditions, GRK and arrestin-dependent desensitization of MOR proceeds dramatically slower than that of DOR. Furthermore, GRK3 phosphorylation sites required for opioid receptor desensitization also greatly differ. The determinants for DOR and KOR desensitization reside in the carboxyl-terminal tail, whereas MOR depends on Thr-180 in the second intracellular loop. Although this later finding might indicate an inefficient phosphorylation of MOR Thr-180, increasing the amount of arrestin expressed greatly increased the rate of MOR desensitization to a rate comparable with that of DOR. Similarly, coexpression of a constitutively active arrestin 2(R169E) with MOR and DOR desensitized both receptors in an agonist-dependent, GRK-independent manner at rates that were indistinguishable. Together, these data suggest that it is the activation of arrestin, rather than its binding, that is the rate-limiting step in MOR desensitization. In addition, mutation of Thr-161 in DOR, homologous to MOR Thr-180, significantly inhibited the faster desensitization of DOR. These results suggest that DOR desensitization involves phosphorylation of both the carboxyl-terminal tail and the second intracellular loop that together leads to a more efficient activation of arrestin and thus faster desensitization.  相似文献   

3.
The delta-opioid receptor (DOR) belongs to the superfamily of G-protein-coupled receptors (GPCRs) with seven transmembrane domains, and its membrane trafficking is regulated by intracellular sorting processes involving its C-tail motifs, intracellular sorting proteins, and several intracellular signaling pathways. In the quiescent state, DOR is generally located in the intracellular compartments in central neurons. However, chronic stimulation, such as chronic pain and sustained opioid exposure, may induce membrane trafficking of DOR and its translocation to surface membrane. The emerged functional DOR on cell membrane is actively involved in pain modulation and opioid analgesia. This article reviews current understanding of the mechanisms underlying GPCRs and DOR membrane trafficking, and the analgesic function of emerged DOR through membrane trafficking under certain pathophysiological circumstances.  相似文献   

4.
Type-specific sorting of G protein-coupled receptors after endocytosis   总被引:7,自引:0,他引:7  
The beta(2)-adrenergic receptor (B2AR) and delta-opioid receptor (DOR) are structurally distinct G protein-coupled receptors (GPCRs) that undergo rapid, agonist-induced internalization by clathrin-coated pits. We have observed that these receptors differ substantially in their membrane trafficking after endocytosis. B2AR expressed in stably transfected HEK293 cells exhibits negligible (<10%) down-regulation after continuous incubation of cells with agonist for 3 h, as assessed both by radioligand binding (to detect functional receptors) and immunoblotting (to detect total receptor protein). In contrast, DOR exhibits substantial (>/=50%) agonist-induced down-regulation when examined by similar means. Degradation of internalized DOR is sensitive to inhibitors of lysosomal proteolysis. Flow cytometric and surface biotinylation assays indicate that differential sorting of B2AR and DOR between distinct recycling and non-recycling pathways (respectively) can be detected within approximately 10 min after endocytosis, significantly before the onset of detectable proteolytic degradation of receptors ( approximately 60 min after endocytosis). Studies using pulsatile application of agonist suggest that after this sorting event occurs, later steps of membrane transport leading to lysosomal degradation of receptors do not require the continued presence of agonist in the culture medium. These observations establish that distinct GPCRs differ significantly in endocytic membrane trafficking after internalization by the same membrane mechanism, and they suggest a mechanism by which brief application of agonist can induce substantial down-regulation of receptors.  相似文献   

5.
The delta-opioid receptor (DOR) can undergo proteolytic down-regulation by endocytosis of receptors followed by sorting of internalized receptors to lysosomes. Although phosphorylation of the receptor is thought to play an important role in controlling receptor down-regulation, previous studies disagree on whether phosphorylation is actually required for the agonist-induced endocytosis of opioid receptors. Furthermore, no previous studies have determined whether phosphorylation is required for subsequent sorting of internalized receptors to lysosomes. We have addressed these questions by examining the endocytic trafficking of a series of mutant versions of DOR expressed in stably transfected HEK 293 cells. Our results confirm that phosphorylation is not required for agonist-induced endocytosis of truncated mutant receptors that lack the distal carboxyl-terminal cytoplasmic domain containing sites of regulatory phosphorylation. However, phosphorylation is required for endocytosis of full-length receptors. Mutation of all serine/threonine residues located in the distal carboxyl-terminal tail domain of the full-length receptor to alanine creates functional mutant receptors that exhibit no detectable agonist-induced endocytosis. Substitution of these residues with aspartate restores the ability of mutant receptors to undergo agonist-induced endocytosis. Studies using green fluorescent protein-tagged versions of arrestin-3 suggest that the distal tail domain, when not phosphorylated, inhibits receptor-mediated recruitment of beta-arrestins to the plasma membrane. Biochemical and radioligand binding studies indicate that, after endocytosis occurs, phosphorylation-defective mutant receptors traffic to lysosomes with similar kinetics as wild type receptors. We conclude that phosphorylation controls endocytic trafficking of opioid receptors primarily by regulating a "brake" mechanism that prevents endocytosis of full-length receptors in the absence of phosphorylation. After endocytosis occurs, subsequent steps of membrane trafficking mediating sorting and transport to lysosomes do not require receptor phosphorylation.  相似文献   

6.
We have recently shown that the mu-opioid receptor [MOR1, also termed mu-opioid peptide (MOP) receptor] is associated with the phospholipase D2 (PLD2), a phospholipid-specific phosphodiesterase located in the plasma membrane. We further demonstrated that, in human embryonic kidney (HEK) 293 cells co-expressing MOR1 and PLD2, treatment with (D-Ala2, Me Phe4, Glyol5)enkephalin (DAMGO) led to an increase in PLD2 activity and an induction of receptor endocytosis, whereas morphine, which does not induce opioid receptor endocytosis, failed to activate PLD2. In contrast, a C-terminal splice variant of the mu-opioid receptor (MOR1D, also termed MOP(1D)) exhibited robust endocytosis in response to both DAMGO and morphine treatment. We report here that MOR1D also mediates an agonist-independent (constitutive) PLD2-activation facilitating agonist-induced and constitutive receptor endocytosis. Inhibition of PLD2 activity by over-expression of a dominant negative PLD2 (nPLD2) blocked the constitutive PLD2 activation and impaired the endocytosis of MOR1D receptors. Moreover, we provide evidence that the endocytotic trafficking of the delta-opioid receptor [DOR, also termed delta-opioid peptide (DOP) receptor] and cannabinoid receptor isoform 1 (CB1) is also mediated by a PLD2-dependent pathway. These data indicate the generally important role for PLD2 in the regulation of agonist-dependent and agonist-independent G protein-coupled receptor (GPCR) endocytosis.  相似文献   

7.
We have shown in a previous study that desensitization and internalization of the human dopamine D(1) receptor following short-term agonist exposure are mediated by temporally and biochemically distinct mechanisms. In the present study, we have used site-directed mutagenesis to remove potential phosphorylation sites in the third intracellular loop and carboxyl tail of the dopamine D(1) receptor to study these processes. Mutant D(1) receptors were stably transfected into Chinese hamster ovary cells, and kinetic parameters were measured. Mutations of Ser/Thr residues to alanine in the carboxyl tail demonstrated that the single substitution of Thr-360 abolished agonist-induced phosphorylation and desensitization of the receptor. Isolated mutation of the adjacent glutamic acid Glu-359 also abolished agonist-induced phosphorylation and desensitization of the receptor. These data suggest that Thr-360 in conjunction with Glu-359 may comprise a motif necessary for GRK2-mediated phosphorylation and desensitization. Agonist-induced internalization was not affected with mutation of either the Thr-360 or the Glu-359 residues. However, receptors with Ser/Thr residues mutated in the distal carboxyl tail (Thr-446, Thr-439, and Ser-431) failed to internalize in response to agonist activation, but were able to desensitize normally. These results indicate that agonist-induced desensitization and internalization are regulated by separate and distinct serine and threonine residues within the carboxyl tail of the human dopamine D(1) receptor.  相似文献   

8.
Although highly homologous in amino acid sequence, the agonist-receptor complexes formed by the human lutropin receptor (hLHR) and rat (r) LHR follow different intracellular routes. The agonist-rLHR complex is routed mostly to a lysosomal degradation pathway whereas a substantial portion of the agonist-hLHR complex is routed to a recycling pathway. In a previous study, we showed that grafting a five-residue sequence (GTALL) present in the C-terminal tail of the hLHR into the equivalent position of the rLHR redirects a substantial portion of the internalized agonist-rLHR complex to a recycling pathway.Using a number of mutations of the GTALL motif, we now show that only the first two residues (GT) of this motif are necessary and sufficient to induce recycling of the internalized agonist-rLHR complex. Phosphoamino acid analysis and mutations of the GT motif show that phosphorylation of the threonine residue is not necessary for recycling. Lastly, we show that addition of portions of the C-terminal tail of the hLHR that include the GT motif to the C-terminal tails of the rat follitropin or murine delta-opioid receptors promotes the post-endocytotic recycling of these G protein-coupled receptors.We conclude that the GT motif present in the C-terminal tail of the hLHR is a transferable motif that promotes the postendocytotic recycling of several G protein-coupled receptors and that the GT-induced recycling does not require the phosphorylation of the threonine residue.  相似文献   

9.
Binyaminy B  Gafni M  Shapira M  Sarne Y 《Life sciences》2008,82(15-16):831-839
Opioid agonists are known to induce down regulation of opioid receptors through the classical pathway that involves phosphorylation, clathrin-dependent endocytosis and lysosomal/endosomal degradation of the internalized receptors. As expected, exposure of mu-opioid receptor (MOR)-transfected HEK-293 cells to either DAMGO (a specific mu-opioid agonist) or etorphine (a wide spectrum opioid agonist) resulted in down regulation of the receptors that was blocked by the kinase inhibitor staurosporine, by hypertonic sucrose and by the lysosomal and proteasomal inhibitors chloroquine and lactacystin. High concentration of etorphine, but not of DAMGO, induced an additional process of down regulation that was resistant to staurosporine, to hypertonic sucrose and to chloroquine-lactacystin. Etorphine, but not DAMGO, also induced down regulation of mu-opioid receptors in isolated membranes of HEK cells. This membrane-delimited down regulation was blocked by selective inhibitors of protease enzymes, suggesting the involvement of membranous serine- and amino-peptidases. This membranous down regulation of opioid receptors was dependent on the concentration of etorphine and was blocked by the opioid antagonist naloxone. Etorphine induced similar down regulation in membranes of HEK-293 cells transfected with delta-opioid receptors (DOR) as well in membranes of cells that endogenously express opioid receptors. This agonist-specific membrane-delimited regulatory process appears to be physiologically relevant and should be taken into account when studying long term effects of opioid drugs.  相似文献   

10.
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via endocytic trafficking to lysosomes but does not require covalent modification by ubiquitin to do so. This raises the question of whether lysosomal down-regulation of this "ubiquitination-independent" GPCR is mediated by a completely distinct biochemical mechanism or if similar VPS machinery is involved. Agonist-induced proteolysis of DOR was significantly inhibited by dominant negative mutant versions of Vps4/Skd1, an AAA-family ATPase required for a late step in lysosomal sorting of ubiquitinated membrane cargo. Furthermore, overexpression and interfering RNA-mediated knockdown indicated that lysosomal trafficking of opioid receptors is also dependent on Hrs, a VPS protein that mediates an early step in lysosomal sorting of ubiquitinated cargo. However, interfering RNA-mediated knockdown of Tsg101, a VPS protein that is essential for an intermediate step of the conserved lysosomal sorting mechanism, did not detectably affect agonist-induced proteolysis of DOR in the same cells in which (ubiquitination-dependent) lysosomal trafficking of epidermal growth factor receptors was clearly inhibited. These results indicate that opioid receptors, despite their ability to undergo efficient agonist-induced trafficking to lysosomes in the absence of covalent modification by ubiquitin, utilize some (Vps4 and Hrs) but perhaps not all (Tsg101) of the VPS machinery required for lysosomal sorting of ubiquitinated membrane cargo.  相似文献   

11.
Dileucine-based motifs have been shown to regulate endosomal sorting of a number of membrane proteins. Previously, we have shown that the dileucine motif Leu(679), Leu(680) in the juxtamembrane domain of the human epidermal growth factor receptor is involved in the endosome-to-lysosome transport of ligand-receptor complexes. Substitution of alanine residues for Leu(679), Leu(680) led to a reduction in ligand-induced receptor degradation without affecting internalization. In the current study, we have further characterized ligand-dependent intracellular sorting of EGF receptors containing a L679A, L680A. Immunocytochemical studies reveal that although mutant receptors redistribute from the cell surface to transferrin receptor-positive endocytic vesicles similar to wild-type following ligand stimulation, their accumulation in Lamp-1-positive late endosomes/lysosomes is retarded compared to wild-type. Kinetic analysis of (125)I-EGF trafficking shows that reduced accumulation of internalized mutant receptors in Lamp-1-positive vesicles is due to rapid recycling of ligand-receptor complexes from early endocytic compartments. In addition, the fraction of intracellular (125)I-EGF that is transported to late endocytic compartments in cells with mutant receptors is not as efficiently degraded as it is in cells with wild-type receptors. Furthermore, wild-type receptors in endocytic vesicles isolated by Percoll gradient fractionation are more resistant to in vitro digestion with proteinase K than mutant receptors. We propose that mutant receptors interact inefficiently with lysosomal sorting machinery, leading to their increased recycling. Our results are consistent with a model in which the Leu(679), Leu(680) signal facilitates sequestration of ligand-receptor complexes into internal vesicles of multivesicular endosome-to-lysosome transport intermediates.  相似文献   

12.
Prolonged activation of opioid receptors leads to their phosphorylation, desensitization, internalization, and down-regulation. To elucidate the relationship between mu-opioid receptor (MOR) phosphorylation and the regulation of receptor activity, a series of receptor mutants was constructed in which the 12 Ser/Thr residues of the COOH-terminal portion of the receptor were substituted to Ala, either individually or in combination. All these mutant constructs were stably expressed in human embryonic kidney 293 cells and exhibited similar expression levels and ligand binding properties. Among those 12 Ser/Thr residues, Ser(363), Thr(370), and Ser(375) have been identified as phosphorylation sites. In the absence of the agonist, a basal phosphorylation of Ser(363) and Thr(370) was observed, whereas [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO)-induced receptor phosphorylation occurs at Thr(370) and Ser(375) residues. Furthermore, the role of these phosphorylation sites in regulating the internalization of MOR was investigated. The mutation of Ser(375) to Ala reduced the rate and extent of receptor internalization, whereas mutation of Ser(363) and Thr(370) to Ala accelerated MOR internalization kinetics. The present data show that the basal phosphorylation of MOR could play a role in modulating agonist-induced receptor internalization kinetics. Furthermore, even though mu-receptors and delta-opioid receptors have the same motif encompassing agonist-induced phosphorylation sites, the different agonist-induced internalization properties controlled by these sites suggest differential cellular regulation of these two receptor subtypes.  相似文献   

13.
In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.  相似文献   

14.
Regulator of G protein signaling protein 4 (RGS4) acts as a GTPase accelerating protein to modulate μ- and δ- opioid receptor (MOR and DOR, respectively) signaling. In turn, exposure to MOR agonists leads to changes in RGS4 at the mRNA and/or protein level. Here we have used human neuroblastoma SH-SY5Y cells that endogenously express MOR, DOR, and RGS4 to study opioid-mediated down-regulation of RGS4. Overnight treatment of SH-SY5Y cells with the MOR agonist DAMGO or the DOR agonist DPDPE decreased RGS4 protein by ~60% accompanied by a profound loss of opioid receptors but with no change in RGS4 mRNA. The decrease in RGS4 protein was prevented by the pretreatment with pertussis toxin or the opioid antagonist naloxone. The agonist-induced down-regulation of RGS4 proteins was completely blocked by treatment with the proteasome inhibitors MG132 or lactacystin or high concentrations of leupeptin, indicating involvement of ubiquitin-proteasome and lysosomal degradation. Polyubiquitinated RGS4 protein was observed in the presence of MG132 or the specific proteasome inhibitor lactacystin and promoted by opioid agonist. The loss of opioid receptors was not prevented by MG132, demonstrating a different degradation pathway. RGS4 is a GTPase accelerating protein for both Gα(i/o) and Gα(q) proteins. After overnight treatment with DAMGO to reduce RGS4 protein, signaling at the Gα(i/o)-coupled DOR and the Gα(q)-coupled M(3) muscarinic receptor (M(3)R) was increased but not signaling of the α(2) adrenergic receptor or bradykinin BK(2) receptor, suggesting the development of cross-talk between the DOR and M(3)R involving RGS4.  相似文献   

15.
Although a large superfamily of G-protein-coupled receptors serves multiple functions, little is known about their functional activation during ontogeny. To examine the functional activation of the mu-opioid receptor (MOR) and the delta-opioid receptor (DOR) during development, sections of mouse embryos and fetuses from e11.5 until birth were treated with DAMGO and DPDPE, respectively, and the ability of these drugs to induce G-protein coupling was assessed by using GTPgamma(35)S binding autoradiography. MOR activation was first detected in the caudate-putamen (CPU) at e12.5, and by e15.5, activity had not only increased in this region but also expanded to include the midbrain, medial habenula, hypothalamus, pons, and medulla. DOR activity first appeared at e17.5 in the hypothalamus, pons, medial habenula, and medulla and at p1 in the CPU at levels noticeably less than those of the MOR. In general, MOR and DOR activation lagged only slightly behind the appearance of MOR-1 and DOR-1 mRNA but delayed activation was particularly pronounced in the trigeminal ganglia, where MOR-1 gene expression was first detected at e13.5, but MOR activity was not observed even at birth. Thus, the data demonstrate temporal and often region-specific differences in the appearance and magnitude of functional activity in cell groups expressing either the MOR-1 or DOR-1 genes, suggesting that interaction between the opioid receptors, G-proteins, and other signaling cofactors is developmentally regulated.  相似文献   

16.
It was demonstrated in the previous study that the microinjection of antisense oligodeoxynucleotide (AS ODN) against mu-opioid receptor (MOR) into periaqueductal gray (PAG) of rat brain selectively decreased the MOR mRNA content in PAG, and the decrease in MOR mRNA content was enhanced by pretreatment of the PAG with MOR AS ODN. In the present investigation, effects of the pretreatment of PAG with AS ODN against kappa- or delta-opioid receptor (KOR or DOR) on the decrease in the MOR mRNA content induced by MOR AS ODN were examined. Both KOR and DOR AS ODNs significantly decreased the target mRNA contents, while they did not significantly change MOR mRNA content. The decrease in MOR mRNA content induced by MOR AS ODN, however, was significantly enhanced by the pretreatment of PAG with either KOR or DOR AS ODNs. Results show that the AS ODN has both the specific target mRNA decreasing action and the nonspecific enhancing action on the AS-induced decrease in the mRNA content.  相似文献   

17.
Adaptor protein interaction with specific peptide motifs found within the intracellular, carboxyl terminus of chemokine receptor CXCR2 has been shown to modulate intracellular trafficking and receptor function. Efficient ligand-induced internalization of this receptor is dependent on the binding of adaptor protein 2 to the specific LLKIL motif found within the carboxyl terminus (1). In this study we show that the carboxyl-terminal type 1 PDZ ligand motif (-STTL) of CXCR2 plays an essential role in both proper intracellular receptor trafficking and efficient cellular chemotaxis. First, we show that CXCR2 is sorted to and degraded in the lysosome upon long-term ligand stimulation. We also show that receptor degradation is not dependent upon receptor ubiquitination, but is instead modulated by the carboxyl-terminal type I PDZ ligand of CXCR2. Deletion of this ligand results in increased degradation, earlier co-localization with the lysosome, and enhanced sorting to the Rab7-positive late endosome. We also show that deletion of this ligand effects neither receptor internalization nor receptor recycling. Furthermore, we demonstrate that deletion of the PDZ ligand motif results in impaired chemotactic response. The data presented here demonstrate that the type I PDZ ligand of CXCR2 acts to both delay lysosomal sorting and facilitate proper chemotactic response.  相似文献   

18.
Agonist stimulation of the β2-adrenergic receptors (β2ARs) leads to their ubiquitination and lysosomal degradation. Inhibition of lysosomal proteases results in the stabilization and retention of internalized full-length β2ARs in the lysosomes, whereas inhibition of proteasomal proteases stabilizes newly synthesized β2ARs in nonlysosomal compartments. Additionally, a lysine-less β2AR (0K-β2AR) that is deficient in ubiquitination and degradation is not sorted to lysosomes unlike the WT β2AR, which is sorted to lysosomes. Thus, lysosomes are the primary sites for the degradation of agonist-activated, ubiquitinated β2ARs. To identify the specific site(s) of ubiquitination required for lysosomal sorting of the β2AR, four mutants, with lysines only in one intracellular domain, namely, loop 1, loop 2, loop 3, and carboxyl tail were generated. All of these receptor mutants coupled to G proteins, recruited β-arrestin2, and internalized just as the WT β2AR. However, only loop 3 and carboxyl tail β2ARs with lysines in the third intracellular loop or in the carboxyl tail were ubiquitinated and sorted for lysosomal degradation. As a complementary approach, we performed MS-based proteomic analyses to directly identify ubiquitination sites within the β2AR. We overexpressed and purified the β2AR from HEK-293 cells with or without prior agonist exposure and subjected trypsin-cleaved β2AR to LC-MS/MS analyses. We identified ubiquitinated lysines in the third intracellular loop (Lys-263 and Lys-270) and in the carboxyl tail (Lys-348, Lys-372, and Lys-375) of the β2AR. These findings introduce a new concept that two distinct domains in the β2AR are involved in ubiquitination and lysosomal degradation, contrary to the generalization that such regulatory mechanisms occur mainly at the carboxyl tails of GPCRs and other transmembrane receptors.  相似文献   

19.
Chronic activation of the mu-opioid receptor (MOR1TAG) results in the loss of agonist response that has been attributed to desensitization and down-regulation of the receptor. It has been suggested that opioid receptor phosphorylation is the mechanism by which this desensitization and down-regulation occurs. When MOR1TAG was stably expressed in both neuroblastoma neuro2A and human embryonic kidney HEK293 cells, the opioid agonist [D-Ala2,MePhe4, Gly5-ol]enkephalin (DAMGO) induced a time- and concentration-dependent phosphorylation of the receptor, in both cell lines, that could be reversed by the antagonist naloxone. Protein kinase C can phosphorylate the receptor, but is not involved in DAMGO-induced MOR1TAG phosphorylation. The rapid rate of receptor phosphorylation, occurring within minutes, did not correlate with the rate of the loss of agonist-mediated inhibition of adenylyl cyclase, which occurs in hours. This lack of correlation between receptor phosphorylation and the loss of response was further demonstrated when receptor phosphorylation was increased by either calyculin A or overexpression of the G-protein receptor kinases. Calyculin A increased the magnitude of MOR1TAG phosphorylation without altering the DAMGO-induced loss of the adenylyl cyclase response. Similarly, when mu- and delta-opioid (DOR1TAG) receptors were expressed in the same system, overexpression of beta-adrenergic receptor kinase 2 elevated agonist-induced phosphorylation for both receptors. However, in the same cell lines under the same conditions, overexpression of beta-adrenergic receptor kinase 2 and beta-arrestin 2 accelerated the rate of DPDPE- but not DAMGO-induced receptor desensitization. Thus, these data show that phosphorylation of MOR1TAG is not an obligatory event for the DAMGO-induced loss in the adenylyl cyclase regulation by the receptor.  相似文献   

20.
Tropomyosin-related kinase A (TrkA) receptor mediates the effects exerted by nerve growth factor on several subpopulations of neuronal cells. Ligand binding to TrkA induces receptor autophosphorylation on several tyrosine residues and the activation of signaling cascades. In this study, we describe a new site relevant for TrkA regulation, the tyrosine 701 (Y701), which is important for receptor trafficking and activation. Y701 replacement by aspartate or phenylalanine reduces receptor internalization rate and decreases the colocalization and association of TrkA with clathrin heavy chain, demonstrating that Y701 constitutes a YxxΦ (YRKF701–704) trafficking motif relevant for the regulation of receptor endocytosis. In accordance with this hypothesis, the colocalization of Y701 mutant receptors with a lysosomal marker is also reduced giving support to the involvement of the YRKF701–704 motif in the lysosomal targeting of TrkA receptors. Contrary to what was expected, substitution of Y701 for an Asp in order to mimic phosphorylation, impairs TrkA ability to mediate nerve growth factor-induced differentiation, although the mutant receptor retains its in vitro kinase activity. This is the first evidence that a Tyr residue can simultaneously regulate TrkA receptor trafficking and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号