首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis By application of appropriate blocking reactions (acetylation, de-amination, methylation and NaHSO3-treatment) it is demonstrated that the tissue ligands involved in the selective glycogen contrast staining reaction with the OsVI. FeII complex (known to be present in the combination K2OsO 4 K 4Fe(CN)6) are the glycogen C2–C3 di-hydroxyl groups. Deliberate conversion of the diols into di-aldehydes and (di-)carboxyl groups by the application of specific oxidative agents followed, by application of the OsVI.FeII-complex results morphologically in identical selective contrast staining of glycogen.By applying appropriate blocking reactions to such pre-oxidized aldehyde fixed glycogen, evidence is accumulated that K2OsO4 and K3Fe(CN)6 are unable to oxidize diols, whereas OsO4 and H2O2 are able to convert diols into carboxyl groups.From these results it is concluded that in the combination K2OsO 4 K 4Fe(CN)6 the OsVI.FeII complex reacts with unchanged diols in the glycogen, whereas the OsO4 in the combination OsO 4 K 4Fe(CN)6 can petentially create carboxyl groups in the aldehydefixed glycogen.The addition of urea to the two glycogen contrasting combinations (K2OsO 4 K 4Fe(CN)6 or OsO 4 K 4Fe(CN)6), also emphasizes that, although morphologically both combinations produceidentical contrast stained glycogen, chemically the contrast staining is apparently obtained in a different way, as urea prevented the contrast for mation in the glycogen by the combination K2OsO 4 K 4Fe(CN)6, but not by the combination OsO 4 K 3Fe(CN)6.  相似文献   

2.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

3.
《Inorganica chimica acta》1986,116(2):99-107
Important theoretical approaches to metal cluster bonding including the Wade-Mingos skeletal electron pair method, the Teo topological electron count, the King-Rouvray graph theory derived method, and Lauher's extended Hückel calculations are shown to agree in their apparent skeletal electron counts for the most prevalent metal cluster polyhedra including the tetrahedron, the trigonal bipyramid (both ordinary and elongated), square pyramid, octahedron, bicapped tetrahedron, pentagonal bipyramid, and capped octahedron. The graph theory derived method is used to treat osmium carbonyl clusters containing from five to eleven osmium atoms. In this connection most osmium carbonyl clusters can be classified into the following types: (1) Clusters exhibiting edge- localized bonding containing multiple tetrahedral chambers (e.g., Os5(CO)16, Os6(CO)18, H2Os7(CO)20 and HOs8(CO)22); (2) Capped octahedral clusters derived from osmium carbonyl fragments of the type Os6+p(CO)19+2p (p = 0, 1, 2, and 4) (e.g., Os6- (CO)182−, Os7(CO)21, Os8(CO)222−, and H4Os10- (CO)242−). Other more unusual osmium carbonyl clusters such as the planar Os6(CO)17 [P(OCH3)3]4, the Os9 cluster [Os9(CO)21C3H2R], and the Os11 cluster Os11C(CO)272− can also be treated satisfactorily by these methods. The importance of the number of ligands around isoelectronic Osn systems in determining the cluster polyhedron is illustrated by the different cluster polyhedra found for each member of the following isoelectronic pairs: HOs6- (CO)18/H2Os6(CO)18. Os7(CO)21/H2Os7(CO)20, Os8(CO)222−/HOs8(CO)22. The tendency for osmium carbonyl clusters frequently to form polyhedra exhibiting edge-localized rather than globally delocalized bonding relates to the facility for osmium carbonyl vertices to contribute more than three internal orbitals to the cluster bonding. In this way Wade's well-known analogy between boron hydride clusters and metal clusters, which assumes exactly three internal orbitals for each vertex atom, is frequently no longer followed in the case of osmium carbonyl clusters.  相似文献   

4.
Treatment of [Os3(μ-H)2(CO)10] with the chiral diphosphines BINAP, tolBINAP [(R)-2,2′-bis(di-4-tolylphosphino)-1,1′-binaphthyl], DIOP [(4R,5R)-(−)-O-isopropenylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane] affords [Os3(μ-H)2(CO)8(μ-L)] (L = BINAP (1), tolBINAP (2), DIOP (4)) in high yield. The X-ray structures for 1, 2 and 4 are reported, and structural and spectroscopic comparisons are made between these clusters and [Os3(μ-H)2(CO)8(μ-L)] (L = dppm (5), dppe (6), dppp (7)) which were synthesised similarly. Compounds 5 to 7 were previously synthesised by hydrogenation of 1,2-[Os3(CO)10(μ-L)] but the route from [Os3(μ-H)2(CO)10] is preferable. The H-bridged Os?Os distances are similar in 1, 2 and 4 indicating that these species are formally unsaturated 46-electron clusters. The P?P distances vary from 4.24 to 4.30 Å in 1 and 2, respectively, to 4.53 Å in 4 and there are related changes in the angles associated with the ligand set around the H-bridged osmium atoms. Introduction of the diphosphine ligands completely suppresses the ability to add CO, to insert acetylene to form a μ-η12-vinyl compound, and to exchange hydride ligands with styrene-d8, which are reactions characteristic of [Os3(μ-H)2(CO)10]. Clusters 2 and 5-7 were also used to examine the potential of natural abundance 187Os NMR spectroscopy through techniques based on inverse detection by HMQC, HSQC and HMBC spectroscopy.  相似文献   

5.
Activities of the iron complexes of evolutionary importance like K4[Fe(CN)6], K4[Fe(CN)5(gly)], and K4[Fe(CN)5(trigly)] have been tested towards some redox reactions of biological significance, namely, decomposition of hydrogen peroxide, dehydrogenation of NADH and ascorbic acid both coupled with reduction of methylene blue. It has been observed that the catalytic activities of iron (II) complexes towards the redox reactions studied at pH 9.18 followed the order, K4[Fe(CN)6]4[Fe(CN)5(gly)]4[Fe(CN)5(trigly)]. Decomposition of H2O2 catalysed by cyanocomplexes of iron (II) has been discussed through the formation of an innersphere complex in which loosly bound ligands like, glycine and triglycine are replaced by hydroperoxide ion. A tentative mechanism for the catalysed decomposition of H2O2 has been discussed.Based upon the experimental observations a hypothesis on the evolution of iron containing enzymes has been envisaged as: iron(II) ion iron(II) cyanide complexes mixed ligand iron(II) cyanide and amino acid complexes iron(II) complexes of macromolecules proenzyme or early enzyme containing iron(II).  相似文献   

6.
A new mononuclear tetracyanometallic complex, (n-Bu4N)[(dbphen)Fe(CN)4] (1, dbphen = 5,6-dibromo-1,10-phenanthroline), has been prepared by reacting [(dbphen)FeII(py)2(SCN)2] and KCN in water and further oxidized with chlorine. With the use of 1 as building block, two trinuclear Fe2M complexes, [(dbphen)2Fe2(CN)8Cu(Me3tacn)]·3H2O (2), [(dbphen)2Fe2(CN)8Ni(dabhctd)]·2H2O (3) and a chain complex of squares [(dbphen)2Fe2(CN)8Co(MeOH)2]n (4), have been synthesized and structurally characterized. Magnetic studies show ferromagnetic coupling between FeIII and MII (M = Cu, 2; Ni, 3) ions bridged by cyanides in complexes 2 and 3, while complex 4 exhibits meta-magnetic behavior.  相似文献   

7.
Reaction of sodium picolinate with FeIII oxo-centered carboxylate triangles in MeCN in the presence of PPh4Cl yields (PPh4)[Fe4O2(O2CR)7(pic)2] (R = Ph (1), But (2)). Omitting the phosphonium cation produces [Fe8Na4O4(O2CPh)16(pic)4(H2O)4] (3), which contains two Fe4Na2 units bridged by two picolinate ligands. X-ray crystal structures of 1 and 3 are reported.Voltammetric profiles in MeCN show four one-electron reduction steps for complexes 1 and 2. Variable-temperature magnetic susceptibility measurements in polycrystalline samples of 1 and 3 reveal strong antiferromagnetic couplings leading to = 0 ground states.  相似文献   

8.
Os3(CO)10(MeCN)2 reacts at room temperature in MeCN or toluene with R-Pyca2 to yield two isomers of Os3(CO)10(R-Pyca) that differ in the bonding of the R-Pyca ligand to the Os3(CO)10 unit. In all cases Os3(CO)10(R-Pyca(4e)) (isomer A; 4a: R = c-Pr, 4b: R = i-Pr, 4c: R = neo-Pent, 4d: R = t-Bu), containing a chelating 4e donating R-Pyca ligand and three OsS bonds, could be isolated. In the case of R = c-Pr and R = i-Pr Os3(CO)10(R-Pyca(6e)) (isomer B; 5a: R = c-Pr, 5b: R = i-Pr), in which only two OsS bonds are present and the R-Pyca ligand is bonded as a 6e donating ligand bridging two non-bonded Os atoms, could be isolated as a minor product.At 70 °C Os3(CO)10(R-Pyca(4e)) (4b and 4d) loses one carbonyl and the pyridine moiety of the R-Pyca ligand is ortho-metallated to form HOs3(C5H3N-2-C(H)NR)(CO)9 (6b: R = i-Pr and 6d: R = t-Bu). Under the same conditions Os3(CO)10(i-Pr-Pyca(6e)) (5b) reacts to Os2(CO)6(6e)) (7b) containing a bridging 6e donating ligands. The latter two reactions were followed with FT-IR spectroscopy in a high temperature IR cell.The structure of the complexes in solution have been studied by 1H and 1C NMR and IR spectroscopy. The stoichiometries of 4a and 5a were determined by FAB-mass spectrometry while an exact mass determination was carried out for 4a.The crystal structure of 6b has been determined. Crystal of 6b are monoclinic, space group P21/n, with a = 7.808(2),b = 17.613(3),c = 16.400(8)Å, β = 94.09(3)° and Z = 4. The structure was refined to R = 0.039. The molecule contains a triangular array of osmium atoms [Os(1)Os(2) = 2.898(2)Å, Os(1)Os(3) = 2.886(2)Åand Os(2)O(3) = 2.911(2)Å] and nine terminally bonded carbonyl ligands. The C5H3N-2-C(H)N-i-Pr ligand is chelate bonded to Os(2) with the pyridine and imine nitrogens atoms axially and equatorially coordinated respectively [Os(2)N(1) = 2.00(2)Åand Os(2)N(2) = 2.11(2)Å]. The i-Pr-Pyca ligand is ortho-metallated at C(1) and forms a four membered ring containing Os(2), Os(3), C(1) and N(1), the Os(3)C(1) distance being 2.12(2)Å. The hydride, which could not be located unequivocally from a difference Fourier map is proposed to bridge the Os(2)(3) bond on the basis of stereochemical considerations.  相似文献   

9.
The reaction of 2 equiv. of [Os3(CO)10(MeCN)2] with R-CC-L-CC-R (R = H, L = (C4H2S); R = SiMe3, L = (C4H2S-C4H2S), (C4H2S-C4H2S-C4H2S), (C4H2S)-(C14H8)-(C4H2S)) affords the series of linked clusters [{Os3(CO)10}(HCC(C4H2S)CCH){Os3(CO)10}] (1), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (2), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (4) and [{Os3(CO)10}(Me3SiCC(C4H2S)-(C14H8)-(C4H2S)CCSiMe3){Os3(CO)10}] (6) as the major products. The complexes have been characterised by a range of spectroscopic methods and, in the case of 1 and 2 by single crystal X-ray crystallography. The alkyne groups cap the osmium triangles in the expected μ32-||-bonding mode and each triangle is coordinated by nine terminal and one μ2-carbonyl group. Solution UV-Vis spectra of the complexes were similar to those observed for the free ligands consistent with there being little delocalisation between the cluster units and the thiophene groups.  相似文献   

10.
Two iron(III) complexes, [Fe4OCl(O2CMe)3(O3PC6H9)3(py)5] (1) and [Fe7O2(O2CPh)9(O3PC6H9)4(py)6] (2), have been prepared through solution reactions of [Fe3O(O2CR)6(H2O)3]Cl (R = Me, Ph) with cyclohexenephosphonic acid. Both compounds contain triangular oxo-centered [Fe33-O)]7+ units. In complex 1, the fourth iron atom is capped on this triangular unit through O-P-O bridges, forming a tetranuclear cluster with a tetrahedral arrangement of iron atoms. In complex 2, two equivalent [Fe33-O)]7+ units are connected by the fourth iron atom through four phosphonate ligands, forming a heptanuclear cluster. Variable temperature susceptibility measurements were performed for 1 and 2. Both exhibit dominant antiferromagnetic interactions between the Fe(III) centers.  相似文献   

11.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   

12.
Interaction of the hexa-lacunary polyanion precursor [α-H2P2W12O48]12− and the FeIII in aqueous solution results in the formation of an equatorial tri-iron substituted Wells-Dawson type compound, K4Cs2Fe2[P2W15(FeOH)3O59]·22H2O (1). Compound 1 was characterized by IR, elemental, single-crystal X-ray diffraction, thermogravimetric, magnetic, as well as electrochemical analysis. The polyoxoanion [P2W15(FeOH)3O59]12− can be viewed as a derivative of the parent polyoxoanion [α-P2W18O62]6− by removal of three belt WO groups and then inhabited by three FeOH groups. The compound 1-modified carbon paste electrode (1-CPE) presents good electrocatalytic activity not only toward the reduction of nitrite which is attributed to the function of tungstophosphate, but also toward the oxidation of ascorbic acid which is primarily attributed to the function of FeIII. The magnetic properties of 1 have been studied by magnetic susceptibility and fitted according to an isotropic exchange model. Compound 1 exhibits strong antiferromagnetic spin exchange interactions between the FeIII centers.  相似文献   

13.
A new tri-cyanometalate building block for heterometallic complexes, [PPh4]2[FeII(Tpms)(CN)3] (2) (PPh4 = tetraphenylphosphonium; Tpms = tris(pyrazolyl) methanesulfonate), has been prepared. Using it as a building block, a one-dimensional chain compound, {[FeII(Tpms)(CN)3][MnII(H2O)2( DMF)2]} · DMF (3), has been synthesized and structurally characterized. The magnetic properties of 3 correspond to a ferromagnetic chain with weak long-range superexchanged magnetic interaction between the high-spin manganese(II) ions.  相似文献   

14.
The reactions of 2-amino-anthracene with [Os3(CO)10(CH3CN)2] have been studied and the products structurally characterized by spectroscopic, X-ray diffraction, photophysical and electrochemical techniques. At room temperature in CH2Cl2 two major, isomeric products are obtained [Os3(CO)10(μ-η2-(N-C(1))-NH2C14H8)(μ-H)] (1, 14%) and [Os3(CO)10(μ-η2-(N-C(3))-NHC14H9)(μ-H)] (2, 35%) along with a trace amount of the dihydrido complex [Os3(CO)9(μ-η2-(N-C(3))-NHC14H8)(μ-H)2] (3). In refluxing tetrahydrofuran only complexes 2 and 3 are obtained in 24% and 28%, respectively. A separate experiment shows that complex 1 slowly converts to 2 and that the rearrangement is catalyzed by adventitious water and involves proton transfer to the anthracene ring. Complex 1 is stereochemically non-rigid; exhibiting edge to edge hydride migration while 2 is stereochemically rigid. Complex 3 is also stereochemically non-rigid showing a site exchange process of the magnetically nonequivalent hydrides typical for trinuclear dihydrides. Interestingly, 2 decarbonylates cleanly to the electronically unsaturated 46e cluster [Os3(CO)932-(N-C(3))-NHC10H9)(μ-H)] (4, 68%) in refluxing cyclohexane, while photolysis of 2 in CH2Cl2 yields only a small amount of 3 along with considerable decomposition. The mechanism of the conversion of 1 to 2 and the dependence of the product distribution on solvent are discussed. All four compounds are luminescent with compounds 1-3 showing emissions that can be assigned to radiative decay associated with the anthracene ligand. Complexes 1-3 all show irreversible 1e reductions in the range of −1.85-2.14 V while 4 shows a nicely reversible 1e wave at −1.16 V and a quasi-reversible second 1e wave at −1.62 V. Irreversible oxidations are observed in the range from +0.35 to +0.49 V. The relationship between the cluster ligand configurations and the observed electrochemical and photochemical behavior is discussed and compared with that of the free ligand.  相似文献   

15.
Electron staining of the cell surface coat by osmium-low ferrocyanide   总被引:1,自引:0,他引:1  
Summary In aldehyde-fixed liver and renal cortex of rat and mouse several variations of postfixation with osmium tetroxide plus potassium ferrocyanide (FeII) were tried. Depending on the ferrocyanide concentration different staining patterns were observed in TEM.-Osmium-High Ferrocyanide [40 mM (1%) OsO4+36 mM (1.5%) FeII, pH 10.4], stains membranes and glycogen. Cytoplasmic ground substance, mitochondrial matrices and chromatin are partially extracted, cell surface coats remain unstained. Membrane contrast, but extraction too, are higher with solutions containing cacodylate- than phosphate-buffer.-Osmium-Low Ferrocyanide [40 mM (1%) OsO4+2 mM (0.08%) FeII, pH 7.4], stains cell surface coats and basal laminae, but not glycogen, except for special cases. The trilaminar structure of membranes is poorly delineated. Signs of cytoplasmic extraction are not visible. The surface coat staining is stronger and more widespread with solutions containing phosphate- instead of cacodylate-buffer; it is enhanced by section staining with lead citrate. The cell surface coat stain does not traverse tight junctions nor permeate membranes.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

16.
Reactions of the electron-deficient triosmium cluster [Os3(CO)932-C9H6N)(μ-H)] (1) with various alkynes are described. Cluster 1 readily reacts with the activated alkyne dimethyl acetylenedicarboxylate (dmad) upon mild heating (65-70 °C) to give the adduct [Os3(CO)9(μ-C9H6N)(μ3-MeO2CCCHCO2Me)] (2). In contrast, a similar reaction of 1 with diphenylacetylene affords previously reported compounds [Os3(CO)10(μ-η2-C9H6N)(μ-H)] (3), [Os3(CO)9(μ-C4Ph4)] (4) and [Os3(CO)83-C(C6H4)C3Ph3}(μ-H)] (5) while with 2-butyne gives only the known compound [Os3(CO)7(μ-C4Me4)(μ3-C2Me2)] (6). The new cluster 2 has been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

17.
Han Bao  Keisuke Kawakami  Jian-Ren Shen 《BBA》2008,1777(9):1109-1115
In intact PSII, both the secondary electron donor (TyrZ) and side-path electron donors (Car/ChlZ/Cytb559) can be oxidized by P680+ at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S1TyrZ EPR signal were independent of the treatment of K3Fe(CN)6, whereas formation and decay of the Car+/ChlZ+ EPR signal correlated with the reduction and recovery of the Fe3+ EPR signal of the non-heme iron in K3Fe(CN)6 pre-treated PSII, respectively. Based on the observed correlation between Car/ChlZ oxidation and Fe3+ reduction, the oxidation of non-heme iron by K3Fe(CN)6 at 0 °C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe3+ EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of TyrZ oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. TyrZ oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K3Fe(CN)6 takes place only in inactive PSII, which implies that the Fe3+ state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

18.
Summary The useful detection of acid phosphatase activity with cerium as a capturing agent is confirmed. By introducing a freeze step in combination with a preincubation, reliably localized, lysosomal precipitates are obtained and aspecific ones prevented.Short (t<1 h) postfixation with either OsO4 plus K4Fe (CN)6 or OsO4 plus aminotriazole, added to lysosomal cerium localization a high membrane contrast.The detection of cerium by X-ray microanalysis is improved by a better spectral separation of the osmium (M ) and cerium (L ) peaks.  相似文献   

19.
Using the tetracyanometalate precursor [Fe(4,4′-dmbipy)(CN)4]- (4,4′-dmbipy = 4,4′-dimethyl-2,2′-bipyridine) as the building block, two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [M(CH3OH)2Fe2(4,4′-dmbipy)2(CN)8]n (M = Cu, 1; Mn, 2), have been synthesized and structurally characterized. X-ray crystallography reveals that complexes 1 and 2 consist of heterobimetallic chains of squares, and the central MII ion is six-coordinated as an elongated distorted octahedral geometry. Magnetic studies show ferromagnetic coupling between FeIII and CuII ions in complex 1. Complex 2 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (SMn = 5/2 and SFe = 1/2), which interact antiferromagnetically through bridging cyanide groups. magpack program has been employed to investigate the magnetic nature of squares chain structure.  相似文献   

20.
Growth, K+ content, and alkaloid production were compared in nonorganogenetic callus cultures ofNicotiana tabacum cv. Burley 21 grown at 25°C in the dark on two different media: a basal medium with 1 M -naphthaleneacetic acid and 1 M kinetin, and one with 1 M -naphthaleneacetic acid and 1 M 4PU-30 (N-(2-chloro-4-pyridyl)-N-phenylurea). These callus tissues behaved differently not only in growth and K+ content but also in alkaloid production. In comparison to cultures grown with kinetin, those grown with 4PU-30 showed a significantly higher fresh weight and dry weight and K+ content during the growth period studied. The data clearly indicate a positive correlation between K+ uptake rate stimulated by 4PU-30 and cell enlargement rate. However, the alkaloid biosynthesis in the callus tissues was activated by the supply of kinetin and diminished by that of 4PU-30. It thus appears that cellular enlargement of meristematic tissue stimulated by 4PU-30 limited alkaloid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号