首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA is closely associated with the induction of degenerative diseases, including cancer. However, the oxidant species participating in the formation of 8-OHdG has yet to be fully clarified. On the basis that peroxyl radicals are a strong candidate for this species, we employed 2,2'-azobis(2-amidinopropane) (AAPH) as a peroxyl radical generator. Exposure of calf thymus DNA to AAPH formed 8-OHdG, but the exposure of 2'-deoxyguanosine (dG) alone did not. From the exposure of various combinations of nucleotides, 8-OHdG was formed only in the presence of dG and thymidine (dT). A mix of dG with an oxidation product of dT, 5-(hydroperoxymethyl)-2'-deoxyuridine, produced 8-OHdG, but the amount formed was small. In contrast, 8-OHdG was produced abundantly by the addition of dG to peroxidized dT with AAPH. Thus, the formation of 8-OHdG was mediated by the peroxidized dT. Instead of artificial AAPH, endogenous peroxyl radicals are known to be lipid peroxides, which are probably the oxidant species for 8-OHdG formation mediated by thymidine in vivo.  相似文献   

2.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

3.
Oxygen radical generating systems, namely, Cu(II)/ H2O2, Cu(II)/ascorbate, Cu(II)/NAD(P)H, Cu(II)/ H2O2/catecholamine and Cu(II)/H2O2/SH-compounds irreversibly inhibited yeast glutathione reductase (GR) but Cu(II)/H2O2 enhanced the enzyme diaphorase activity. The time course of GR inactivation by Cu(II)/H2O2 depended on Cu(II) and H2O2 concentrations and was relatively slow, as compared with the effect of Cu(II)/ascorbate. The fluorescence of the enzyme Tyr and Trp residues was modified as a result of oxidative damage. Copper chelators, catalase, bovine serum albumin and HO˙ scavengers prevented GR inactivation by Cu(II)/H2O2 and related systems. Cysteine, N-acetylcysteine, N-(2-dimercaptopropi-onylglycine and penicillamine enhanced the effect of Cu(II)/H2O2 in a concentration- and time-dependent manner. GSH, Captopril, dihydrolipoic acid and dithiotreitol also enhanced the Cu(II)/H2O2 effect, their actions involving the simultaneous operation of pro-oxidant and antioxidant reactions. GSSG and try-panothione disulfide effectively protected GR against Cu(II)/H2O2 inactivation. Thiol compounds prevented GR inactivation by the radical cation ABTS*+. GR inactivation by the systems assayed correlated with their capability for HO* radical generation. The role of amino acid residues at GR active site as targets for oxygen radicals is discussed.  相似文献   

4.
4-Hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus, is carcinogenic to rodents. To clarify the mechanism of carcinogenesis, we investigated DNA damage by 4-hydrazinobenzoic acid using 32P-labeled DNA fragments obtained from the human p53 and p16 tumor suppressor genes. 4-Hydrazinobenzoic acid induced Cu(II)-dependent DNA damage especially piperidine-labile formation at thymine and cytosine residues. Typical hydroxyl radical scavengers showed no inhibitory effects on Cu(II)-mediated DNA damage by 4-hydrazinobenzoic acid. Bathocuproine and catalase inhibited the DNA damage, indicating the participation of Cu(I) and H2O2 in the DNA damage. These findings suggest that H2O2 generated by the autoxidation of 4-hydrazinobenzoic acid reacts with Cu(I) to form reactive oxygen species, capable of causing DNA damage. Interestingly, catalase did not completely inhibit DNA damage caused by a high concentration of 4-hydrazinobenzoic acid (over 50 μM) in the presence of Cu(II). 4-Hydrazinobenzoic acid induced piperidine-labile sites frequently at adenine and guanine residues in the presence of catalase. 4-Hydrazinobenzoic acid increased formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in calf thymus DNA, whereas 4-hydrazinobenzoic acid did not increase the formation of 8-oxodG in the presence of catalase. ESR spin-trapping experiments showed that the phenyl radical was formed during the reaction of 4-hydrazinobenzoic acid in the presence of Cu(II) and catalase. Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF/mass) spectrometry analysis showed that phenyl radical formed adduct with adenosine and guanosine. These results suggested that 4-hydrazinobenzoic acid induced DNA damage via not only H2O2 production but also phenyl radical production. This study suggests that both oxidative DNA damage and DNA adduct formation play important roles in the expression of carcinogenesis of 4-hydrazinobenzoic acid.  相似文献   

5.
Mercaptopropionylglycine (MPG) has a marked cardioprotective action in several model systems of ischaemia-reoxygenation injury. Suggested mechanisms of action include scavenging of hydroxyl radical and the hypochlorous acid and reacting with an oxidant formed by reaction of myoglobin with H2O2, thereby slowing lipid peroxidation stimulated by myoglobin-H2O2 mixtures. This oxidant seems not to be singlet O2 or hydroxyl radical. Studies in vitro show that scavenging of hypochlorous acid is a feasible mechanism of cardioprotective action for MPG in vivo in ischaemia/reperfusion systems to which neutrophil-mediated injury contributes. However, the poor ability of MPG to inhibit lipid peroxidation stimulated by myoglobin/H2O2 mixtures and its ability to increase iron ion release from myoglobin in the presence of a large excess of H2O2, suggests that MPG is unlikely to protect the myocardium by interfering with oxidants produced by the myoglobin-H2O2 system.  相似文献   

6.
Copper Fenton systems (Cu(II)/H2O2 and Cu(II)/Asc) inactivated the lipoamide reductase and enhanced the diaphorase activity of pig-heart lipoamide dehydrogenase (LADH). Cupric ions alone were less effective. As a result of Cu(II)/H2O2 treatment, the number of titrated thiols in LADH decreased from 6 to 1 per subunit. NADH and ADP (not NAD+ or ATP) enhanced LADH inactivation by Cu(II). NADH also enhanced the effect of Cu(II)/H2O2. Dihydrolipoamide, dihydrolipoic acid, Captopril, acetylcysteine, EDTA, DETAPAC, histidine, bathocuproine, GSSG and trypanothione prevented LADH inactivation. 100 μM GSH, DL-dithiothreitol, N-(2-mercaptopropionylglicine) and penicillamine protected LADH against Cu(II)/Asc and Cu(II), whereas 1.0 mm GSH and DL-dithiothreitol also protected LADH against Cu(II)/H2O2. Allopurinol provided partial protection against Cu(II)/H2O2. EthanoI, mannitol, Na benzoate and superoxide dismutase failed to prevent LADH inactivation by Cu(II)/H2O2 or Cu(II). Catalase (native or denaturated) and bovine serum albumin protected LADH but that protection should be due to Cu binding. LADH inhibited deoxyribose oxidation and benzoate hydroxylation by Cu(II)/H2O2. It is concluded that site-specifically generated HO, radicals were responsible for LADH inactivation by Cu(II) Fenton systems. The latter effect is discussed in the context of ischemia-reoxygenation myocardial injury.  相似文献   

7.
Although thiourea has been used widely to study the role of hydroxyl radicals in metal-mediated biological damage, it is not a specific hydroxyl radical scavenger and may also exert antioxidant effects unrelated to hydroxyl radical scavenging. Thus, we investigated the effects of thiourea on copper-induced oxidative damage to bovine serum albumin (1 mg/ml) in three different copper-containing systems: Cu(II)/ascorbate, Cu(II)/H2O2, and Cu(II)/H2O2/ascorbate [Cu(II), 0.1 mM; ascorbate, 1 mM; H2O2, 1 mM]. Oxidative damage to albumin was measured as protein carbonyl formation. Thiourea (0.1–10 mM) provided marked and dose-dependent protection against protein oxidation in all three copper-containing systems. In contrast, only minor protection was observed with dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Strong protection was also observed with dimethylthiourea, but not with urea or dimethylurea. Thiourea also significantly inhibited copper-catalyzed oxidation of ascorbate, and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous, but not cupric, copper, as demonstrated by both UV-visible and low temperature electron spin resonance measurements. We conclude that the protection by thiourea against copper-mediated protein oxidation is not through scavenging of hydroxyl radicals, but rather through the chelation of cuprous copper and the formation of a redox-inactive thiourea-copper complex.  相似文献   

8.
The polymorphonuclear leukocyte secretes both O2-and H2O2 when stimulated by various soluble or particulate stimuli. Since a rcaction involving iron, O2-, and H2O2 could generate the hydroxyl radical (HO.) there has been speculation that the HO-may participate in the bactericidal activity of the neutroph-il. A variety of water-soluble HO. scavengers have been used to test for the participation of HO. and the results imply that HO. might participate. However, other workers have not been able to detect the formation of significant amounts of HO-by the activated neutrophil. We have examined the effect of several commonly used HO. radical scavengers on the ability of the neutrophil to secrete O2-and H2O2. Several of these compounds actively inhibit secretion without affecting the viability of the neutrophil. After considering the various complications inherent in using water soluble radical scavengers, we suggest that they only be used with well defined experimental systems.  相似文献   

9.
Incubation of rat-liver microsomes, previously azide-treated to inhibit catalase, with H2O2 caused a loss of cytochrome P-450 but not of cytochrome b5. This loss of P-450 was not prevented by scavengers of hydroxyl radical, chain-breaking antioxidants or metal ion-chelating agents. Application of the thiobarbituric acid (TBA) assay to the reaction mixture suggested that H2O2 induces lipid peroxidation, but this was found to be due largely or completely to an effect of H2O2 on the TBA assay. By contrast, addition of ascorbic acid and Fe(III) to the microsomes led to lipid peroxidation and P-450 degradation: both processes were inhibited by chelating agents and chain-breaking antioxidants, but not by hydroxyl radical scavengers. H2O2 inhibited ascorbate/Fe (III)-induced microsomal lipid peroxidation, but part of this effect was due to an action of H2O2 in the TBA test itself. H2O2 also decreased the colour measured after carrying out the TBA test upon authentic malondialdehyde, tetraethoxypropane, a DNA-Cu2+/o-phenanthroline system in the presence of a reducing agent, ox-brain phospholipid liposomes in the presence of Fe(III) and ascorbate, or a bleomycin-iron ion/DNA/ascorbate system. Caution must be used in interpreting the results of TBA tests upon systems containing H2O2.  相似文献   

10.
The oxidation of 2-keto-4-thiomethyl butyric acid (KTBA) and methionine to ethylene has been used to evaluate generation of ferryl species or hydroxyl radicals by H2O2--activated haemproteins or free ferric ions. Hydrogen peroxide was generated by a glucose oxidase-glucose system at a rate of 1 μM/min. Free ferric in the presence of H2O2 oxidizes KTBA, and this was highly inhibited by hydroxyl radical scavengers, caeruloplasmin, superoxide dismutase (SOD) and EDTA. However, when metmyoglobin, methaemoglobin (MtHb) or horseradish peroxidase (HRP) were tested in the same model system, hydroxyl radical scavengers suppressed partially KTBA oxidation and caeruloplasmin, SOD and EDTA failed to inhibit the reaction. Cytochrome-c was found to be a weak promoter of KTBA oxidation in the presence of H2O2. Methionine was oxidized to ethylene by an active system which generates hydroxyl radicals, but not by H2O2--activated metmyoglobin. Ferric ions chelated to membranes or ADP in the presence of H2O2 generated enzymatically, initiated membranal lipid peroxidation only in the presence of ascorbic acid, and this was inhibited by EDTA. In contrast, metmyoglobin and methaemoglobin activated by H2O2 generated by the same system, initiated membranal lipid peroxidation and this was not inhibited by EDTA. It is concluded that ferryl and not HO. is the main oxidant in systems containing myoglobin and haemoglobin activated by low concentrations of H2O2.  相似文献   

11.
Hydrogen peroxide activation of MMb with and without the presence of BSA gave rise to rapid formation of hyper-valent myoglobin species, myoglobin ferryl radical (·MbFe(IV)=O) and/or ferrylmyoglobin (MbFe(IV)=O). Reduction of MbFe(IV)=O showed first-order kinetics for a 1-2 times stoichiometric excess of H2O2 to MMb while a 3-10 times stoichiometric excess of H2O2 resulted in a biphasic reaction pattern. Radical species formed in the reaction between MMb, H2O2 and BSA were influenced by [H2O2] as measured by electron spin resonance (ESR) spectroscopy and resulted in the formation of cross-linking between BSA and myoglobin which was confirmed by SDS-PAGE and subsequent amino acid sequencing. Moreover, dityrosine was formed in the initial phases of the reaction for all concentrations of H2O2. However, initially formed dityrosine was subsequently utilized in reactions employing stoichiometric excess of H2O2 to MMb. The observed breakdown of dityrosine was ascribed to additional radical species formed from the interaction between H2O2 and the hyper-valent iron-center of H2O2-activated MMb.  相似文献   

12.
The reaction of H2O2 with resting metmyoglobin (MetMb), methaemoglobin (MetHb) and cytochrome-c (Cyt-c) was studied in the Soret and visible regions. The differences between the original and the final peak heights of the native haemproteins at 408 nm was found to be directly proportional to the loss of iron from the molecule. The release of iron from haemproteins was studied in a system generating H2O2 continuously at a low rate by an enzymic system, or by addition of large amounts of H2O2. Cytochrome-c, methaemoglobin and metmyoglobin during interaction with H2O2 at a concentration of 200 μM release 40%, 20% and 3%, respectively, of molecular iron after l0min. The inhibition of haem degradation and iron release by enzymatically-generated H2O2 was determined using several hydroxyl radical scavengers, reducing agents and antioxienzymes, such as superoxide dismutase, catalase and caeruloplasmin.  相似文献   

13.
Escherichia coli lethality by hydrogen peroxide is characterized by two modes of killing. In this paper we have found that hydroxyl radicals (OH -) generated by H2O2 and intracellular divalent iron are not involved in the induction of mode one lethality (i.e. cell killing produced by concentrations of H2O2 lower than 2.5 mM). In fact, the OH radical scavengers, thiourea, ethanol and dimethyl sulfoxide, and the iron chelator, desferrioxarnine, did not affect the survival of cells exposed to 2.5mM H2O2. In addition cell vulnerability to the same H2O2 concentration was independent on the intracellular iron content. In contrast, mode two lethality (i.e. cell killing generated by concentrations of H2O2 higher than 10mM) was markedly reduced by OH radical scavengers and desferrioxamine and was augmented by increasing the intracellular iron content.

It is concluded that OH. are required for mode two killing of E. coli by hydrogen peroxide.  相似文献   

14.
ESR spin trapping measurements demonstrate generation of hydroxyl (.OH) radical from reduction of vanadate by rat liver microsomes/NADH without exogenous H2O2. Catalase decreases the .OH signal while increasing a vanadium(4+) signal. Addition of superoxide dismutase (SOD) or measurements under an argon atmosphere show decreased .OH radical production. The results suggest that during the one-electron vanadate reduction process by microsomes/NADH, molecular oxygen is reduced to H2O2, which then reacts with vanadium (4+) to generate .OH radical via a Fenton-like mechanism.  相似文献   

15.
Electron spin resonance spin trapping was utilized to investigate free radical generation from cobalt (Co) mediated reactions using 5,5-dimethyl-l-pyrroline (DMPO) as a spin trap. A mixture of Co with water in the presence of DMPO generated 5,5-dimethylpyrroline-(2)-oxy(1) DMPOX, indicating the production of strong oxidants. Addition of superoxide dismutase (SOD) to the mixture produced hydroxyl radical (OH). Catalase eliminated the generation of this radical and metal chelators, such as desferoxamine, diethylenetriaminepentaacetic acid or 1,10-phenanthroline, decreased it. Addition of Fe(II) resulted in a several fold increase in the OH generation. UV and O2 consumption measurements showed that the reaction of Co with water consumed molecular oxygen and generated Co(II). Since reaction of Co(II) with H2O2 did not generate any significant amount of OH radicals, a Co(I) mediated Fenton-like reaction [Co(I) + H2O2 → Co(II) + OH + OH] seems responsible for OH generation. H2O2 is produced from O2 via dismutation. O2 is produced by one-electron reduction of molecular oxygen catalyzed by Co. Chelation of Co(II) by biological chelators, such as glutathione or β-ananyl-3-methyl- -histidine alters, its oxidation–reduction potential and makes Co(II) capable of generating OH via a Co(II)-mediated Fenton-like reaction [Co(II) + H2O2 → Co(III) + OH + OH]. Thus, the reaction of Co with water, especially in the presence of biological chelators, glutathione, glycylglycylhistidine and β-ananyl-3-methyl- -histidine, is capable of generating a whole spectrum of reactive oxygen species, which may be responsible for Co-induced cell injury.  相似文献   

16.
Diesel exhaust particles consist of various organic chemicals, heavy metals, and carbon particles. Knowledge of the fate of organic chemicals and carbon particles in the lungs is important to determine the mechanisms responsible for lung tumors. In the present study, diesel particle extracts were found to show mutagenicity for YG3003, a sensitive strain to some oxidative mutagens, as well as other mutant strains, and those of lung tissues obtained from lung cancer patients exhibited potent mutagenicity. Formation of 8-hydroxyguanosine (8-OHdG) as a biomarker of oxidative damage was analyzed with in vitro and in vivo assay systems. The 8-OHdG was detected in all 22 cases of lung tissues with carcinomas tested and their levels increased with the increasing age of the patients, suggesting a correlation between age and the presence of carbon particles in lung tissues. Therefore, the formation of 8-OHdG due to diesel exhaust particles was investigated via intratracheal injections into mice. 8-OHdG formation was elevated when carboneceous particles, after removal of organic chemicals with various solvents, were administered to mice, but it was not elevated when polyaromatic compounds such as benzo[a]pyrene, 1,8-dinitropyrene, and 1-nitropyrene were used in the same procedure in mice. The carboneceous particles were formed from a giant particle that was aggregated by micro-particles with diameters of 1.47 +/- 1.34 to 1.05 +/- 0.83 microm. These results suggest that carboneceous particles, but not mutagens and carcinogens, promote the formation of 8-OHdG, and that as a mechanism, alveolar macrophages may be involved in oxidative damage. The oxidative damage may be due to the fact that the mutation is involved with the generation of a hydroxyl radical during phagocytosis, and the hydroxyl radical leads to hydroxylation at the C-8 position of the deoxyguanosine residue in the DNA.  相似文献   

17.
The formation and reactivity of ferryl haemoglobin (and myoglobin), which occurs on addition of H2O2, has been proposed as a mechanism contributing to oxidative stress associated with human diseases. However, relatively little is known of the reaction between hydrogen peroxide and human haemoglobin. We have studied the reaction between hydrogen peroxide and purified (catalase free) human metHbA. Addition of H2O2 resulted in production of both ferryl haem iron (detected by optical spectroscopy) and an associated protein radical (detected by EPR spectroscopy). Titrating metHbA with H2O2 showed that maximum ferryl levels could be obtained at a 1:1 stoichiometric ratio of haem to H2O2. No oxygen was evolved during the reaction, indicating that human metHbA does itself not possess catalatic activity. The protein radicals obtained in this reaction reached a steady state concentration, during hydrogen peroxide decomposition, but started to decay once the hydrogen peroxide had been completely exhausted. The presence of catalase, at concentrations around 10 fold lower than metHb, increased the apparent stoichiometry of the reaction to 1 mol metHb: ∼20 mol H2O2 and abolished the protein radical steady state. The biological implications for these results are discussed.  相似文献   

18.
The role of histidine on DNA breakage induced by hydrogen peroxide (H2O2) and ferric ions or by H2O2 and cupric ions was studied on purified DNA. L-histidine slightly reduced DNA breakage by H2O2 and Fe3+ but greatly inhibited DNA breakage by H2O2 and Cu2+. However, only when histidine was present, the addition of EDTA to H2O2 and Fe3+ exhibited a bimodal dose response curve depending on the chelator metal ratio. The enhancing effect of histidine on the rate of DNA degradation by H2O2 was maximal at a chelator metal ratio between 0.2 and 0.5, and was specific for iron. When D-histidine replaced L-histidine, the same pattern of EDTA dose response curve was observed. Superoxide dismutase greatly inhibited the rate of DNA degradation induced by H2O2, Fe3+, EDTA and L-histidine involving the superoxide radical.

These studies suggest that the enhancing effect of histidine on the rate of DNA degradation by H2O2 and Fe3+ is mediated by an oxidant which could be a ferrous-dioxygen-ferric chelate complex or a chelate-ferryl ion.  相似文献   

19.
Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro   总被引:3,自引:0,他引:3  
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with H2O2 in vitro. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepenta-acetic acid, and catalase. Although the oxidized protein resulted in an increase in the content of carbonyl groups, the ferroxidase activity and the proteolytic susceptibility were not significantly altered. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we suggest that damage to DNA is mediated in the H2O2/Cp system via the generation of ·OH by released Cu2+ and/or loosely bound Cu exposed from oxidatively damaged Cp through the conformational change. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.  相似文献   

20.
β-Amyloid peptide (Aβ) 1–42, involved in the pathogenesis of Alzheimer’s disease, binds copper ions to form Aβ · Cun complexes that are able to generate H2O2 in the presence of a reductant and O2. The production of H2O2 can be stopped with chelators. More reactive than H2O2 itself, hydroxyl radicals HO (generated when a reduced redox active metal complex interacts with H2O2) are also probably involved in the oxidative stress that creates brain damage during the disease. We report in the present work a method to monitor the effect of chelating agents on the production of hydrogen peroxide by metallo-amyloid peptides. The addition of H2O2 associated to a pre-incubation step between ascorbate and Aβ · Cun allows to study the formation of H2O2 but also, at the same time, its transformation by the copper complexes. Aβ · Cun peptides produce but do not efficiently degrade H2O2. The reported analytic method, associated to precipitation experiments of copper-containing amyloid peptides, allows to study the inhibition of H2O2 production by chelators. The action of a ligand such as EDTA is probably due to the removal of the copper ions from Aβ · Cun, whereas bidentate ligands such as 8-hydroxyquinolines probably act via the formation of ternary complexes with Aβ · Cun. The redox activity of these bidentate ligands can be modulated by the incorporation or the modification of substituents on the quinoline heterocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号