首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
MD simulations and continuum electrostatics calculations have been used to study the observed differences in thermostability of cold- and warm-active uracil DNA glycosylase (UDG). The present study focuses on the role of ion pairs and how they affect the thermal stability of the two enzymes. Analysis of the MD generated structural ensembles show that cod UDG (cUDG) and human UDG (hUDG) have 11 and 12 ion pairs which are present in at least 30% of the conformations. The electrostatic contribution of the ion pairs, computed using continuum electrostatics, is slightly more favorable in cUDG at 298 K. This is primarily attributed to more optimized interactions between the ion pairs and nearby dipoles/charges in cUDG. More global salt bridges are found in hUDG and are more stabilizing when compared to cUDG, possibly playing a role in maintaining overall stability and reducing conformational entropy. Both enzymes contain one three-member ionic network, but the one found in hUDG is far more stabilizing. Our results also suggest that care should be taken when performing statistical analysis of crystal structures with respect to ion pairs, and that crystallization conditions must be carefully examined when performing such analysis.  相似文献   

2.
The DNA repair enzyme uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil residues from single-stranded or duplex DNA, producing free uracil and abasic DNA. Here we report the high-resolution crystal structures of free UDG from Escherichia coli strain B (1.60 A), its complex with uracil (1.50 A), and a second active-site complex with glycerol (1.43 A). These represent the first high-resolution structures of a prokaryotic UDG to be reported. The overall structure of the E. coli enzyme is more similar to the human UDG than the herpes virus enzyme. Significant differences between the bacterial and viral structures are seen in the side-chain positions of the putative general-acid (His187) and base (Asp64), similar to differences previously observed between the viral and human enzymes. In general, the active-site loop that contains His187 appears preorganized in comparison with the viral and human enzymes, requiring smaller substrate-induced conformational changes to bring active-site groups into catalytic position. These structural differences may be related to the large differences in the mechanism of uracil recognition used by the E. coli and viral enzymes. The pH dependence of k(cat) for wild-type UDG and the D64N and H187Q mutant enzymes is consistent with general-base catalysis by Asp64, but provides no evidence for a general-acid catalyst. The catalytic mechanism of UDG is critically discussed with respect to these results.  相似文献   

3.
Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 enzyme are not only UDGs but also xanthine DNA glycosylases (XDGs). In addition, mutational analysis and molecular dynamics (MD) simulations of Gme SMUG1 identify important structural determinants in conserved motifs 1 and 2 for XDG and UDG activities. Mutations at M57 (M57L) and H210 (H210G, H210M, and H210N), both of which are involved in interactions with the C2 carbonyl oxygen in uracil or xanthine, cause substantial reductions in XDG and UDG activities. Increased selectivity is achieved in the A214R mutant of Gme SMUG1, which corresponds to a position involved in base flipping. This mutation results in an activity profile resembling a human SMUG1-like enzyme as exemplified by the retention of UDG activity on mismatched base pairs and weak XDG activity. MD simulations indicate that M57L increases the flexibility of the motif 2 loop region and specifically A214, which may account for the reduced catalytic activity. G60Y completely abolishes XDG and UDG activity, which is consistent with a modeled structure in which G60Y blocks the entry of either xanthine or uracil to the base binding pocket. Most interestingly, a proline substitution at the G63 position switches the Gme SMUG1 enzyme to an exclusive UDG as demonstrated by the uniform excision of uracil in both double-stranded and single-stranded DNA and the complete loss of XDG activity. MD simulations indicate that a combination of a reduced free volume and altered flexibility in the active-site loops may underlie the dramatic effects of the G63P mutation on the activity profile of SMUG1. This study offers insights on the important role that modulation of conformational flexibility may play in defining specificity and catalytic efficiency.  相似文献   

4.
Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.  相似文献   

5.
Uracil-DNA glycosylase (UDG), a key highly conserved DNA repair enzyme involved in uracil excision repair, was discovered in Escherichia coli . The Bacillus subtilis bacteriophage, PBS-1 and PBS-2, which contain dUMP residues in their DNA, express a UDG inhibitor protein, Ugi which binds to UDG very tightly to form a physiologically irreversible complex. The X-ray analysis of the E. coli UDG ( Ec UDG)-Ugi complex at 3.2 A resolution, leads to the first structure elucidation of a bacterial UDG molecule. This structure is similar to the enzymes from human and viral sources. A comparison of the available structures involving UDG permits the delineation of the constant and the variable regions of the molecule. Structural comparison and mutational analysis also indicate that the mode of action of the enzyme from these sources are the same. The crystal structure shows a remarkable spatial conservation of the active site residues involved in DNA binding in spite of significant differences in the structure of the enzyme-inhibitor complex, in comparison with those from the mammalian and viral sources. Ec UDG could serve as a prototype for UDGs from pathogenic prokaryotes, and provide a framework for possible drug development against such pathogens with emphasis on features of the molecule that differ from those in the human enzyme.  相似文献   

6.
Seibert E  Ross JB  Osman R 《Biochemistry》2002,41(36):10976-10984
Uracil DNA glycosylase (UDG) is a base excision repair enzyme that specifically recognizes and removes uracil from double- or single-stranded DNA. The efficiency of the enzyme depends on the DNA sequence surrounding the uracil. Crystal structures of UDG in complex with DNA reveal that the DNA is severely bent and distorted in the region of the uracil. This suggests that the sequence-dependent efficiency of the enzyme may be related to the energetic cost of DNA distortion in the process of specific damage recognition. To test this hypothesis, molecular dynamics simulations were performed on two sequences representing extreme cases of UDG efficiency, AUA/TAT (high efficiency) and GUG/CAC (low efficiency). Analysis of the simulations shows that the effective bending force constants are lower for the AUA/TAT sequence, indicating that this sequence is more flexible than the GUG/CAC sequence. Fluorescence lifetimes of the adenine analogue 2-aminopurine (2AP), replacing adenine opposite the uracil, are shorter in the context of the AUA/TAT sequence, indicating more dynamic base-base interaction and greater local flexibility than in the GUG/CAC sequence. Furthermore, the K(M) of Escherichia coli UDG for the AUA/TAT sequence is 10-fold smaller than that for the GUG/CAC sequence, while the k(cat) is only 2-fold smaller. This indicates that differences in UDG efficiency largely arise from differences in binding and not catalysis. These results link directly flexibility near the damaged DNA site with the efficiency of DNA repair.  相似文献   

7.
Molecular dynamics simulations of representative mesophilic and psycrophilic elastases have been carried out at different temperatures to explore the molecular basis of cold adaptation inside a specific enzymatic family. The molecular dynamics trajectories have been compared and analyzed in terms of secondary structure, molecular flexibility, intramolecular and protein-solvent interactions, unravelling molecular features relevant to rationalize the efficient catalytic activity of psychrophilic elastases at low temperature. The comparative molecular dynamics investigation reveals that modulation of the number of protein-solvent interactions is not the evolutionary strategy followed by the psycrophilic elastase to enhance catalytic activity at low temperature. In addition, flexibility and solvent accessibility of the residues forming the catalytic triad and the specificity pocket are comparable in the cold- and warm-adapted enzymes. Instead, loop regions with different amino acid composition in the two enzymes, and clustered around the active site or the specificity pocket, are characterized by enhanced flexibility in the cold-adapted enzyme. Remarkably, the psycrophilic elastase is characterized by reduced flexibility, when compared to the mesophilic counterpart, in some scattered regions distant from the functional sites, in agreement with hypothesis suggesting that local rigidity in regions far from functional sites can be beneficial for the catalytic activity of psychrophilic enzymes.  相似文献   

8.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, initiates the uracil excision repair pathway. Ugi, a bacteriophage-encoded peptide, potently inhibits UDGs by serving as a remarkable substrate mimic. Structure determination of UDGs has identified regions important for the exquisite specificity in the detection and removal of uracils from DNA and in their interaction with Ugi. In this study, we carried out mutational analysis of the Escherichia coli UDG at Leu191 within the 187HPSPLS192 motif (DNA intercalation loop). We show that with the decrease in side chain length at position 191, the stability of the UDG-Ugi complexes regresses. Further, while the L191V and L191F mutants were as efficient as the wild type protein, the L191A and L191G mutants retained only 10 and 1% of the enzymatic activity, respectively. Importantly, however, substitution of Leu191 with smaller side chains had no effect on the relative efficiencies of uracil excision from the single-stranded and a corresponding double-stranded substrate. Our results suggest that leucine within the HPSPLS motif is crucial for the uracil excision activity of UDG, and it contributes to the formation of a physiologically irreversible complex with Ugi. We also envisage a role for Leu191 in stabilizing the productive enzyme-substrate complex.  相似文献   

9.
Uracil-DNA glycosylase (UDG) functions as a sentry guarding against uracil in DNA. UDG initiates DNA base excision repair (BER) by hydrolyzing the uracil base from the deoxyribose. As one of the best studied DNA glycosylases, a coherent and complete functional mechanism is emerging that combines structural and biochemical results. This functional mechanism addresses the detection of uracil bases within a vast excess of normal DNA, the features of the enzyme that drive catalysis, and coordination of UDG with later steps of BER while preventing the release of toxic intermediates. Many of the solutions that UDG has evolved to overcome the challenges of policing the genome are shared by other DNA glycosylases and DNA repair enzymes, and thus appear to be general.  相似文献   

10.
DNA glycosylases play a major role in the repair of deaminated DNA damage. Previous investigations identified five families within the uracil-DNA glycosylase (UDG) superfamily. All enzymes within the superfamily studied thus far exhibit uracil-DNA glycosylase activity. Here we identify a new class of DNA glycosylases in the UDG superfamily that lacks UDG activity. Instead, these enzymes act as hypoxanthine-DNA glycosylases in vitro and in vivo. Molecular modeling and structure-guided mutational analysis allowed us to identify a unique catalytic center in this class of DNA glycosylases. Based on unprecedented biochemical properties and phylogenetic analysis, we propose this new class of DNA repair glycosylases that exists in bacteria, archaea, and eukaryotes as family 6 and designate it as the hypoxanthine-DNA glycosylase family. This study demonstrates the structural evolvability that underlies substrate specificity and catalytic flexibility in the evolution of enzymatic function.  相似文献   

11.
The Ugi protein inhibitor of uracil-DNA glycosylase encoded by bacteriophage PBS2 inactivates human uracil-DNA glycosylases (UDG) by forming a tight enzyme:inhibitor complex. To create human cells that are impaired for UDG activity, the human glioma U251 cell line was engineered to produce active Ugi protein. In vitro assays of crude cell extracts from several Ugi-expressing clonal lines showed UDG inactivation under standard assay conditions as compared to control cells, and four of these UDG defective cell lines were characterized for their ability to conduct in vivo uracil-DNA repair. Whereas transfected plasmid DNA containing either a U:G mispair or U:A base pairs was efficiently repaired in the control lines, uracil-DNA repair was not evident in the lines producing Ugi. Experiments using a shuttle vector to detect mutations in a target gene showed that Ugi-expressing cells exhibited a 3-fold higher overall spontaneous mutation frequency compared to control cells, due to increased C:G to T:A base pair substitutions. The growth rate and cell cycle distribution of Ugi-expressing cells did not differ appreciably from their parental cell counterpart. Further in vitro examination revealed that a thymine DNA glycosylase (TDG) previously shown to mediate Ugi-insensitive excision of uracil bases from DNA was not detected in the parental U251 cells. However, a Ugi-insensitive UDG activity of unknown origin that recognizes U:G mispairs and to a lesser extent U:A base pairs in duplex DNA, but which was inactive toward uracil residues in single-stranded DNA, was detected under assay conditions previously shown to be efficient for detecting TDG.  相似文献   

12.
Oxoguanine DNA glycosylase (OGG1) and uracil DNA glycosylase (UDG) are two of the most important repair enzymes that are involved in the base excision repair processes to eliminate oxidative damage from mammalian DNA, which accumulates with aging. Red and white skeletal muscle fibers have very different antioxidant enzyme activities and resistance to oxidative stress. In this paper, we demonstrate that the activity of OGG1 is significantly higher in the red type of skeletal muscle compared with white fibers from old rats. Exercise training resulted in increased OGG1 activity in the nuclei of red fibers and decreased activity in nuclei of white fibers and in the mitochondria of both red and white fibers. The activities of UDG were similar in both red and white muscle fibers. Exercise training appears to increase the activity of UDG in the nuclei and mitochondria. However, exercise training affects the activity of OGG1 in nuclei and mitochondria differently, suggesting different regulation of the enzymes. In contrast, UDG showed similar activities in nuclei and mitochondrial extracts of exercise-trained animals. These data provide evidence for differential regulation of UDG and OGG1 in maintaining fidelity of DNA in oxidatively stressed cells.  相似文献   

13.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in eukaryotes and prokaryotes [1][2][3]. This enzyme removes uracil bases that are present in DNA as a result of either deamination of cytosine or misincorporation of dUMP instead of dTMP [4] [5], and it is the primary activity in the DNA base excision repair pathway. Although UDG activities have been shown to be present in several thermophiles [6][7][8], no sequences have been found that are complementary to the Escherichia coli ung gene, which encodes UDG [9]. Here, we describe a UDG from the thermophile Thermotoga maritima. The T. maritima UDG gene has a low level of homology to the E. coli G-T/U mismatch-specific DNA glycosylase gene (mug). The expressed protein is capable of removing uracil from DNA containing either a U-A or a U-G base pair and is heat-stable up to 75 degrees C. The enzyme is also active on single-stranded DNA containing uracil. Analogous genes appear to be present in several prokaryotic organisms, including thermophilic and mesophilic eubacteria as well as archaebacteria, the human-disease pathogens Treponema palladium and Rickettsia prowazekii, and the extremely radioresistant organism Deinococcus radiodurans. These findings suggest that the T. maritima UDG is a member of a new class of DNA repair enzymes.  相似文献   

14.
Two enzymes of base excision repair (BER), uracil DNA glycosylase (UDG) and DNA polymerase beta (beta pol), from HeLa cells co-eluted from Superose 12 FPLC columns. The UDG was completely displaced from 150-180-kDa fractions to 30- 70-kDa fractions by brief treatment with 0.5 N NaCl, pH 3.0, as expected when protein-protein associations are disrupted, but beta pol was not displaced by this treatment. UDG was not essential to the presence of beta pol in the 150-180-kDa enzyme complex. beta pol and UDG apparently reside in separate but co-eluting structures. Immunoaffinity chromatography showed that the association of UDG and beta pol was accounted for by attachment in common to DNA and that the association was abolished by eliminating DNA. Evidence for base excision repairosomes containing UDG and beta pol in protein-protein assemblies was not found. However, UDG and human AP endonuclease (HAP1) were associated with HSP70 and HSP27, which are present in 150-180-kDa and 30-70-kDa proteins of cell sonicates. The association of HSPs with BER enzymes was confirmed by hydroxyl radical protein-protein footprinting and immunoaffinity tests. The association of HSPs and BER enzymes is a novel finding. HSP binding may account for the presence of BER enzymes in the two large size class fractions and HSPs may have functional roles in BER.  相似文献   

15.
Krosky DJ  Song F  Stivers JT 《Biochemistry》2005,44(16):5949-5959
Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that would otherwise be sequestered in the duplex structure. A classic example is the DNA repair enzyme uracil DNA glycosylase (UDG) which recognizes and excises unwanted uracil bases from DNA using a flipping mechanism. Previous work has suggested that enzymatic base flipping begins with dynamic breathing motions of the enzyme-bound DNA substrate, and then, only very late during the reaction trajectory do strong specific interactions with the extrahelical uracil occur. Here we report that UDG kinetically and thermodynamically prefers substrate sites where the uracil is paired with an unnatural adenine analogue that lacks any Watson-Crick hydrogen-bonding groups. The magnitude of the preference is a striking 43000-fold as compared to an adenine analogue that forms three H-bonds. Transient kinetic and fluorescence measurements suggest that preferential recognition of uracil in the context of a series of incrementally destabilized base pairs arises from two distinct effects: weak or absent hydrogen bonding, which thermodynamically assists extrusion, and, most importantly, increased flexibility of the site which facilitates DNA bending during base flipping. A coupled, stepwise reaction coordinate is implicated in which DNA bending precedes base pair rupture and flipping.  相似文献   

16.
The three dimensional model of cold-adapted Alaskan psychrotroph Pseudomonas species (Strain B11-1) lipase has been constructed by homology modeling based on the crystal structure of acetyl esterase from Rhodococcus species and refined by molecular dynamics methods. Our model locates the substrate-binding cavity and further suggests that Ser-155, Asp-250, and His-280 are the members of the catalytic triad. Substrate specificity of the modeled lipase has been examined by docking experiments, which indicates that the ester of C(6) fatty acid has the highest affinity for the enzyme. Our model also identifies the oxyanion hole that plays an important role in the stabilization of the tetrahedral intermediate during catalysis. Comparison of this cold-adapted lipase with the crystal structure of a thermophilic Bacillus stearothermophilus P1 lipase supported the assumption that cold-adapted enzymes have a more flexible three-dimensional structure than their thermophilic counterparts. The conformational flexibility of this modeled cold-adapted lipase at low temperature probably originates from a combination of factors compared to its thermophilic counterpart, i.e., lower number of salt bridges and cation-pi interactions, increase in the non-polar surface area exposed to solvent. Our study may help in understanding the structural features of a cold-adapted lipase and can further be used in engineering lipase that can function at or near extreme temperatures with considerable biotechnological potential.  相似文献   

17.
《Biophysical journal》2022,121(7):1276-1288
Polymerase chain reaction (PCR) is a powerful tool to diagnose infectious diseases. Uracil DNA glycosylase (UDG) is broadly used to remove carryover contamination in PCR. However, UDG can contribute to false negative results when not inactivated completely, leading to DNA degradation during the amplification step. In this study, we designed novel thermolabile UDG derivatives by supercomputing molecular dynamic simulations and residual network analysis. Based on enzyme activity analysis, thermolability, thermal stability, and biochemical experiments of Escherichia coli-derived UDG and 22 derivatives, we uncovered that the UDG D43A mutant eliminated the false negative problem, demonstrated high efficiency, and offered great benefit for use in PCR diagnosis. We further obtained structural and thermodynamic insights into the role of the D43A mutation, including perturbed protein structure near D43; weakened pairwise interactions of D43 with K42, N46, and R80; and decreased melting temperature and native fraction of the UDG D43A mutant compared with wild-type UDG.  相似文献   

18.
The relationships between structure, activity, stability and flexibility of a cold-adapted aminopeptidase produced by a psychrophilic marine bacterium have been investigated in comparison with a mesophilic structural and functional human homolog. Differential scanning calorimetry, fluorescence monitoring of thermal- and guanidine hydrochloride-induced unfolding and fluorescence quenching were used to show that the cold-adapted enzyme is characterized by a high activity at low temperatures, a low structural stability versus thermal and chemical denaturants and a greater structural permeability to a quenching agent relative to the mesophilic homolog. These findings support the hypothesis that cold-adapted enzymes maintain their activity at low temperatures as a result of increased global or local structural flexibility, which results in low stability. Analysis of the thermodynamic parameters of irreversible thermal unfolding suggests that entropy-driven factors are responsible for the fast unfolding rate of the cold-adapted aminopeptidase. A reduced number of proline residues, a lower degree of hydrophobic residue burial and a decreased surface accessibility of charged residues may be responsible for this effect. On the other hand, the reduction in enthalpy-driven interactions is the primary determinant of the weak conformational stability.  相似文献   

19.
Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.  相似文献   

20.
Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus   总被引:3,自引:0,他引:3  
Uracil-DNA glycosylase (UDG) is an essential enzyme for maintaining genomic integrity. Here we describe a UDG from the extreme thermophile Archaeoglobus fulgidus. The enzyme is a member of a new class of enzymes found in prokaryotes that is distinct from the UDG enzyme found in Escherichia coli, eukaryotes, and DNA-containing viruses. The A. fulgidus UDG is extremely thermostable, maintaining full activity after heating for 1.5 h at 95 degrees C. The protein is capable of removing uracil from double-stranded DNA containing either a U/A or U/G base pair as well as from single-stranded DNA. This enzyme is product-inhibited by both uracil and apurinic/apyrimidinic sites. The A. fulgidus UDG has a high degree of similarity at the primary amino acid sequence level to the enzyme found in Thermotoga maritima, a thermophilic eubacteria, and suggests a conserved mechanism of UDG-initiated base excision repair in archaea and thermophilic eubacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号