首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
睾丸生殖细胞的凋亡及其调控   总被引:8,自引:0,他引:8  
Guo CX  Tang TS  Liu YX 《生理科学进展》2000,31(4):299-304
睾丸生殖细胞在分化过程中存在自发性和诱发性凋亡,这是清除过量或异常生殖细胞的一种重要途径。生殖细胞的凋亡涉及内分泌、细胞社会组成和基因等多因素的调控。深入了解生殖细胞凋亡的调控机制,明确决定睾丸生殖细胞(Germ cells,Gc)凋亡机制的分子组成,将为治疗男性不育和开发男性避孕药物奠定理论基础。  相似文献   

2.
3.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Caspase activation throughout the first wave of spermatogenesis in the rat   总被引:7,自引:0,他引:7  
Early in postnatal life, the first wave of spermatogenesis is accompanied by an initial wave of germ cell apoptosis. This may reflect an adjustment in the number of germ cells that can be adequately maintained by Sertoli cells. Two major pathways (intrinsic and extrinsic) are involved in the process of caspase activation and apoptosis in mammalian cells. The extrinsic pathway is characterized by the oligomerization of death receptors such as FAS or tumor necrosis factor, followed by the activation of caspase-8 and caspase-3. The intrinsic pathway involves the activation of procaspase-9, which in turn activates caspase-3. Extensive information is available concerning apoptotic inducers and their possible mechanisms in the adult rat. However, no data exist regarding the molecular and cellular mechanisms governing physiological cell death during puberty in the male rat. We have studied caspase activation throughout the first wave of spermatogenesis in the rat under physiological conditions, by combining the TUNEL procedure with the localization of active caspases in germ cells. We observed TUNEL-positive germ cells in rats of 5–40 days of age, the highest number being found in 25-day-old rats. TUNEL-positive and caspase-3-positive germ cells appeared as long chains of interconnected germ cells in 25-day-old rats. Caspase activation was assayed by either immunohistochemistry with antibodies against active caspase-3, -8, and -9, or by determining enzymatic activity in seminiferous tubules extracts. Both techniques showed activation of caspase-3, -8, and -9 in 25-day-old rats and low enzymatic activity at other ages. Confocal scanning laser microscopy indicated that active caspase-3, -8, and -9 co-localized with TUNEL-positive cells. Thus, caspase-3, -8, and -9 are active in apoptotic germ cells during the first wave of rat spermatogenesis. The extrinsic pathway of apoptosis may therefore play an important role in germ cell apoptosis during puberty in the rat.This work was financed by a research grant from FONDECYT (1040800) to R.D.M.  相似文献   

5.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

6.
The germ line is established in animal embryos with the formation of primordial germ cells (PGCs), which give rise to gametes. Therefore, the need to form PGCs can act as a developmental constraint by inhibiting the evolution of embryonic patterning mechanisms that compromise their development. Conversely, events that stabilize the PGCs may liberate these constraints. Two modes of germ cell determination exist in animal embryos: (a) either PGCs are predetermined by the inheritance of germ cell determinants (germ plasm) or (b) PGCs are formed by inducing signals secreted by embryonic tissues (i.e., regulative determination). Surprisingly, among the major extant amphibian lineages, one mechanism is found in urodeles and the other in anurans. In anuran amphibians PGCs are predetermined by germ plasm; in urodele amphibians PGCs are formed by inducing signals. To determine which mechanism is ancestral to the tetrapod lineage and to understand the pattern of inheritance in higher vertebrates, we used a phylogenetic approach to analyze basic morphological processes in both groups and correlated these with mechanisms of germ cell determination. Our results indicate that regulative germ cell determination is a property of embryos retaining ancestral embryological processes, whereas predetermined germ cells are found in embryos with derived morphological traits. These correlations suggest that regulative germ cell formation is an important developmental constraint in vertebrate embryos, acting before the highly conserved pharyngula stage. Moreover, our analysis suggests that germ plasm has evolved independently in several lineages of vertebrate embryos.  相似文献   

7.
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.  相似文献   

8.
Spermatogenesis in Drosophila is maintained by germ-line stem cells. These cells undergo self-renewing divisions and also generate daughter gonial cells, whose function is to amplify the germ cell pool. Gonial cells subsequently differentiate into spermatocytes that undergo meiosis and generate haploid gametes. To elucidate the circuitry that controls progression through spermatogenic stem cell lineages, we are identifying mutations that lead to either excess germ cells or germ cell loss. From a collection of male sterile mutants, we identified P-element-induced hypomorphic alleles of nop60B, a gene encoding a pseudouridine synthase. Although null mutations are lethal, our P element-induced alleles generate viable, but sterile flies, exhibiting severe testicular atrophy. Sterility is reversed by P-element excision, and the atrophy is rescued by a Nop60B transgene, confirming identity of the gene. Using cell-type-specific markers, we find that testicular atrophy is due to severe loss of germ cells, including stem cells, but much milder effects on the somatic cells, which are themselves maintained by a stem cell lineage. We show that Nop60B activity is required intrinsically for the maintenance of germ-line stem cells. The relationship of these phenotypes to the human syndrome Dyskeratosis congenita, caused by mutations in a Nop60B homolog, is discussed.  相似文献   

9.
During mouse fetal development, meiosis is initiated in female germ cells only, with male germ cells undergoing mitotic arrest. Retinoic acid (RA) is degraded by Cyp26b1 in the embryonic testis but not in the ovary where it initiates the mitosis/meiosis transition. However the role of RA status in fetal germ cell proliferation has not been elucidated. As expected, using organ cultures, we observed that addition of RA in 11.5 days post-conception (dpc) testes induced Stra8 expression and meiosis. Surprisingly, in 13.5 dpc testes although RA induced Stra8 expression it did not promote meiosis. On 11.5 and 13.5 dpc, RA prevented male germ cell mitotic arrest through PI3K signaling. Therefore 13.5 dpc testes appeared as an interesting model to investigate RA effects on germ cell proliferation/differentiation independently of RA effect on the meiosis induction. At this stage, RA delayed SSEA-1 extinction, p63γ expression and DNA hypermethylation which normally occur in male mitotic arrested germ cells. In vivo, in the fetal male gonad, germ cells cease their proliferation and loose SSEA-1 earlier than in female gonad and RA administration maintained male germ cell proliferation. Lastly, inhibition of endogenous Cyp26 activity in 13.5 dpc cultured testes also prevented male germ cell mitotic arrest. Our data demonstrate that the reduction of RA levels, which occurs specifically in the male fetal gonad and was known to block meiosis initiation, is also necessary to allow the establishment of the germ cell mitotic arrest and the correct further differentiation of the fetal germ cells along the male pathway.  相似文献   

10.
Germ cells play a unique role in gamete production, heredity and evolution. Therefore, to understand the mechanisms that specify germ cells is a central challenge in developmental and evolutionary biology. Data from model organisms show that germ cells can be specified either by maternally inherited determinants (preformation) or by inductive signals (epigenesis). Here we review existing data on 28 metazoan phyla, which indicate that although preformation is seen in most model organisms, it is actually the less prevalent mode of germ cell specification, and that epigenetic germ cell specification may be ancestral to the Metazoa.  相似文献   

11.
睾丸体外生殖模型的发展为体外研究睾丸的精子发生分子机制和睾丸毒理学提供了实验工具。很多报道的模型都无法真正地模拟体内复杂的生化分子及功能性相互作用从而导致研究价值有限。该实验拟建立一个体外长期维持睾丸生殖细胞存在,并能持续产生精子细胞的支持细胞/生殖细胞共培养体系。体系中的支持细胞和生殖细胞均由曲细精管组织块迁移到培养皿上,在不添加任何生长因子的情况下维持体外精子发生至圆形精子细胞超过2个月。RT-PCR分析显示,共培养细胞稳定表达cdh1、scp3、tnp2;免疫荧光染色结果显示,CDH1、PLZF、SCP3以及SOX9阳性细胞存在。这些结果例证了体系中同时存在精原干细胞、精母细胞、精子细胞和支持细胞。简单高效的支持细胞/生殖细胞体外共培养体系可用于雄性生殖的分子机制和毒理学研究。  相似文献   

12.
13.
Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the "niche," which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach. Among the genes identified, we focused on the junctional adhesion molecule 4 (JAM4), an immunoglobulin type cell adhesion molecule. JAM4 protein was actually localized to the plasma membrane in male germ cells. JAM4 expression was downregulated as cells differentiated in both germ cell and hematopoietic cell lineages. To analyze function in vivo, we generated JAM4-deficient mice. Histological analysis of testes from homozygous nulls did not show obvious abnormalities, nor did liver and kidney tissues, both of which strongly express JAM4. The numbers of hematopoietic stem cells in bone marrow were indistinguishable between wild-type and mutant mice, as was male germ cell development. These results suggest that JAM4 is expressed in stem cells and progenitor cells but that other cell adhesion molecules may substitute for JAM4 function in JAM4-deficient mice both in male germ cell and hematopoietic lineages.  相似文献   

14.
15.
Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16(Ink4a) activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16(Ink4a)-mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16(Ink4a)-mediated senescence.  相似文献   

16.
17.
XUXIN  SUMIOSUGANO 《Cell research》1999,9(3):201-208
Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.  相似文献   

18.
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.  相似文献   

19.
Stem cell self-renewal is controlled by concerted actions of niche signals and intrinsic factors in a variety of systems. In the Drosophila ovary, germline stem cells (GSCs) in the niche continuously self-renew and generate differentiated germ cells that interact physically with escort cells (ECs). It has been proposed that escort stem cells (ESCs), which directly contact GSCs, generate differentiated ECs to maintain the EC population. However, it remains unclear whether the differentiation status of germ cells affects EC behavior and how the interaction between ECs and germ cells is regulated. In this study, we have found that ECs can undergo slow cell turnover regardless of their positions, and the lost cells are replenished by their neighboring ECs via self-duplication rather than via stem cells. ECs extend elaborate cellular processes that exhibit extensive interactions with differentiated germ cells. Interestingly, long cellular processes of ECs are absent when GSC progeny fail to differentiate, suggesting that differentiated germ cells are required for the formation or maintenance of EC cellular processes. Disruption of Rho functions leads to the disruption of long EC cellular processes and the accumulation of ill-differentiated single germ cells by increasing BMP signaling activity outside the GSC niche, and also causes gradual EC loss. Therefore, our findings indicate that ECs interact extensively with differentiated germ cells through their elaborate cellular processes and control proper germ cell differentiation. Here, we propose that ECs form a niche that controls GSC lineage differentiation and is maintained by a non-stem cell mechanism.  相似文献   

20.
In some species such as flies, worms, frogs and fish, the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that, although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell-specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号