首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior research suggested that the genes for large (L) and small (S) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) are amplified in ampicillin-resistant pBR322-transformants of Anacystis nidulans 6301. We now report that chromosomal DNA from either untransformed or transformed A. nidulans cells hybridizes with nick-translated [32P]-pBR322 at moderately high stringency. Moreover, nick-translated [32-P]-pCS75, which is a pUC9 derivative containing a PstI insert with L and S subunit genes (for RuBisCO) from A. nidulans, hybridizes at very high stringency with restriction fragments from chromosomal DNA of untransformed and transformed cells as does the 32P-labeled PstI fragment itself. The hybridization patterns suggest the creation of two EcoRI sites in the transformant chromosome by recombination. In pBR322-transformants the RuBisCO activity is elevated 6- to 12-fold in comparison with that of untransformed cells. In spite of the difference in RuBisCO activity, pBR322-transformants grow in the presence of ampicillin at a similar initial rate to that for wild-type cells. Growth characteristics and RuBisCO content during culture in the presence or absence of ampicillin suggest that pBR322-transformants of A. nidulans 6301 are stable. The data also collectively suggest that a given plasmid in the transformed population replicates via a pathway involving recombination between the plasmid and the chromosome.  相似文献   

2.
Discoveries of the uptake and expression of various Escherichia coli plasmids by the cyanobacterium Anacystis nidulans and isolated cumber etioplasts are reviewed. In particular, the binding and uptake of nick-translated 32P-labeled plasmids and the expression of genes in the native plasmids are considered.Permeaplasts of A. nidulans 6301 and isolated EDTA-washed cucumber etioplasts exhibit binding and uptake of DNA that is unaffected by uncouplers of photophosphorylation or by dissipators of transmembrane proton graident. ATP inhibits both binding and udptake by permeaplasts or EDTA-washed etioplasts but the analog AMP-PNP (non-hydrolzable) is noninhibitory. With permeaplasts there is no effect of 20 mM Mg2+ (in the light) upon intake, whereas with EDTA-washed etioplasts, Mg2+ at the same concentration inhibits uptake as does 20 mM Ca2+.The transformation of A. nidulans 6301 to ampicillin-resistance by the plasmid pBR322 is much enhanced in permeaplasts. Indeed extracts of transformed cells catalyze the hydrolosis of the -lactam nitrocefin. Transfromation of A. nidulans to antibiotic resistance may also be achieved with the plasmids pHUB4 and pCH1. The effect of light on transformation of A. nidulans 6301 differs with different plasmids. In pBR322 transformants the expression of ribulose bisphosphate carboxylase-oxygenase (RuBisCO) is markedly elevated. In these transformants, the foreign plasmid replicates by a pathway involving chromosomal integration and dissociation.The plasmid pCS75, a derivative of pUC9 (and therefore of pBR322) containing a Pst1 insert carrying genes for the large and small (S) subunits of RuBisCO from A. nidulans, is taken up and expressed in EDTA-washed cucumber cotyledon etioplasts. Expression is evidenced by the hydrolysis of nitrocefin and immunoprecipitation of labeled S subunits of RuBisCO (utilizing etioplasts which have been labeled with 35S-methionine after incubation with pCS75). The plasmid pUC9-CM carrying a cat gene is also expressed in cucumber etioplasts in a manner that demonstrates dependence both on the duration of etioplast washing by EDTA and plasmid concentration. Translation (as measured by 35S-methionine incorporation) by EDTA-washed etioplasts increases with cotyledon greening. However the enhancement of translation by prior incubation of EDTA-washed plastids with pCS75 decreases to zero during 24hr of cotyledon greening. Results suggest that the expression of foreign DNA in plastids may depend critically upon their developmental state.Abbreviations AMP-PNP adenyl-5-yl imidodiphosphate - APr amplicillin resistance, cat-chloramphenicol acetyltransferase - RuBisCO ribulose bisphosphate carboxylase/oxygenase  相似文献   

3.
Summary The binding and uptake of nick-translated 32P-labeled pBR322 by Anacystis nidulans 6301 have been characterized. Both processes were considerably enhanced in permeaplasts compared to cells. The breakdown of labeled DNA was not correlated with binding or uptake by permeaplasts or cells. Uptake of DNA by permeaplasts was unaffected by: Mg2+ or Ca2+, light, or inhibitors of photophosphorylation such as valinomycin or gramicidin D in the presence or absence of NH4Cl. ATP at 2.5–10 mM inhibited both binding and uptake of labeled DNA by permeaplasts of A. nidulans whereas the ATP analog adenyl-5-yl imido-diphosphate was non-inhibitory in the same concentration range. In contrast to transformation of A. nidulans 6301 cells to ampicillin-resistance by pBR322, transformation to kanamycin-resistance by the plasmid pHUB4 was considerably enhanced in the dark. The transformation efficiency for permeaplasts by the plasmid pCH1 was 59% and 8% in the dark and light, respectively, whereas transformation of permeaplasts by pBR322 at an efficiency of 16% was absolutely light-dependent.  相似文献   

4.
A hybrid plasmid was constructed between the 5.3-megadalton plasmid (pUH24) of Anacystis nidulans R2 and the Escherichia coli plasmid pBR322. This was accomplished by adding a transposon to pBR322 and transforming this DNA into A. nidulans. One resultant hybrid, pLS103, had a molecular weight of 6.8 x 10(6), replicated in both organisms, had unique sites for two restriction endonucleases, conferred ampicillin resistance on both organisms, and could be used as a cloning vector in A. nidulans.  相似文献   

5.
X Soberon  L Covarrubias  F Bolivar 《Gene》1980,9(3-4):287-305
In vitro recombinant DNA experiments involving restriction endonuclease fragments derived from the plasmids pBR322 and pBR325 resulted in the construction of two new cloning vehicles. One of these plasmids, designated pBR327, was obtained after an EcoRII partial digestion of pBR322. The plasmid pBR327 confers resistance to tetracycline and ampicillin, contains 3273 base pairs (bp) and therefore is 1089 bp smaller than pBR322. The other newly constructed vector, which has been designated pBR328, confers resistance to chloramphenicol as well as the two former antibiotics. This plasmid contains unique HindIII, BamHI and SalI sites in the tetracycline resistance gene, unique PvuI and PstI sites in the ampicillin resistance gene and unique EcoRI, PvuII and BalI sites in the chloramphenicol resistance gene. The pBR328 plasmid contains approx. 4900 bp.  相似文献   

6.
Transduction of Low-Copy Number Plasmids by Bacteriophage P22   总被引:5,自引:0,他引:5       下载免费PDF全文
B. A. Mann  J. M. Slauch 《Genetics》1997,146(2):447-456
The generalized transducing bacteriophage of Salmonella typhimurium, P22, can transduce plasmids in addition to chromosomal markers. Previous studies have concentrated on transduction of pBR322 by P22 and P22HT, the high transducing mutant of P22. This study investigates the mechanism of P22HT transduction of low-copy number plasmids, namely pSC101 derivatives. We show that P22HT transduces pSC101 derivatives that share homology with the chromosome by two distinct mechanisms. In the first mechanism, the plasmid integrates into the chromosome of the donor by homologous recombination. This chromosomal fragment is then packaged in the transducing particle. The second mechanism is a size-dependent mechanism involving a putative plasmid multimer. We propose that this multimer is formed by interplasmidic recombination. In contrast, P22HT can efficiently transduce pBR322 by a third mechanism, which is independent of plasmid homology with the chromosome. It has been proposed that the phage packages a linear concatemer created during rolling circle replication of pBR322, similar in fashion to phage genome packaging. This study investigates the role of RecA, RecD, and RecF recombination proteins in plasmid/plasmid and plasmid/chromosome interactions that form packageable substrates in the donor. We also examine the resolution of various transduced plasmid species in the recipient and the roles of RecA and RecD in these processes.  相似文献   

7.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

8.
We developed a new method for the specific mutagenization of the E. coli chromosome. This method takes advantage of the fact that a pBR322 plasmid containing chromosomal sequences is mobilizable during an Hfr-mediated conjugational transfer, due to an homologous recombination between the E. coli Hfr chromosome and the pBR322 derivative. Transconjugants are screened with a simple selection procedure for integration of mutant sequences in the chromosome and loss of pBR322 sequences. Using this method we specifically inactivated several genes near the E. coli replication origin oriC. We found that a gene coding for asparagine synthetase A. This regulatory mechanism was investigated in detail by determining in vivo regulation of asnA promoter activity by the 17kD protein under different growth conditions. Results obtained also suggest a general regulatory role of the 17kD protein in E. coli asparagine metabolism. Therefore the 17kD gene is proposed to be renamed asnC.  相似文献   

9.
Summary The illegitimate integration of plasmid pGG20 (the hybrid between Staphylococcus aureus plasmid pE194 and Escherichia coli plasmid pBR322) into the Bacillus subtilis chromosome was studied. It was found that nucleotide sequences of both parental plasmids could be involved in this process. The recombinant DNA junctions between plasmid pGG20 and the chromosome were cloned and their nucleotide sequences were determined. The site of recombination located on the pBR322 moiety carried a short region (8 bp) homologous with the site on the chromosome. The nucleotide sequences of the pE194 recombination sites did not share homology with chromosomal sequences involved in the integration process. Two different pathways of illegitimate recombination in B. subtilis are suggested.  相似文献   

10.
Synechococcus sp. PCC7942 recipient strains were constructed for the chromosomal integration of DNA fragments cloned in any pBR322-derived vector, which carries the ampicillin resistance (ApR) marker. The construction was based on the incorporation of specific recombination targets, the so-called 'integration platforms', into the chromosomal metF gene. These platforms consist of an incomplete bla gene (ApS) and the pBR322 ori separated from each other by a gene encoding an antibiotic (streptomycin or kanamycin) resistance (SmR or KmR). Recombination between a pBR322-derived donor plasmid and such a chromosomal platform results with high frequency in restoration of the bla gene and replacement of the chromosomal marker (SmR or KmR) by the insert of the donor plasmid. The integration into the platform depends on recombination between pBR322 ori and bla sequences only and is therefore independent of the DNA insert to be transferred. The desired recombinants are found by selection for a functional bla gene (ApR) and subsequent screening for absence of the chromosomal antibiotic marker. Gene transfer with this integration system was found to occur efficiently and reliably. Furthermore, the presence of the pBR322 ori in the platform allowed for 'plasmid rescue' of integrated sequences. The system was applied successfully for the transfer of the gene encoding plastocyanin (petE1) from Anabaena sp. PCC7937 and for the integration of an extra copy of the gene encoding ferredoxin I (petF1) from Synechococcus sp. PCC7942 itself.  相似文献   

11.
Cloning and characterization of a plasmid DNA from anacystis nidulans 6301   总被引:4,自引:0,他引:4  
K Shinozaki  N Tomioka  C Yamada  M Sugiura 《Gene》1982,19(2):221-224
A plasmid DNA of Anacystis nidulans 6301 was isolated by CsCl-EtBr centrifugation. The Mr of the plasmid, named pBA1, was estimated to be 5.04 +/- 0.26 X 10(6) by electron microscopic analysis and 5.2 X 10(6) by agarose gel electrophoresis. The pBA1 DNA was opened at a unique site with BamHI and cloned in pBR322 vector propagated in Escherichia coli HB101 cells. The recombinant plasmid, named pBAS18, was digested with various restriction endonucleases and its cleavage map was constructed. Based on this result, the cleavage map of the pBA1 plasmid is presented.  相似文献   

12.
A host-vector system for Pseudomonas aeruginosa PAO was developed. Scattered regions of the strain PAO chromosome were cloned by direct selection for complementation of auxotrophs or from a DNA gene bank which contains over 1,000 independently isolated chromosome-vector recombinant plasmids. The use of partially digested chromosomal DNA facilitated the selection of a variety of strain PAO chromosomal markers. The progenitor of the vector was a small, multicopy plasmid, pRO1600, found in a PAO strain which had acquired RP1 in a mating experiment. The bacterial host range that could be determined by transformation of vectors produced from pRO1600 resembles that for plasmid RP1. Two derivative plasmids were formed: pRO1613, for cloning DNA cleaved with restriction endonuclease PstI, and pRO1614, which was formed by deleting part of pRO1613 and fusion with plasmid pBR322. Plasmid pRO1614 utilizes known cloning sites within the tetracycline resistance region of pBR322.  相似文献   

13.
Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli   总被引:9,自引:0,他引:9  
R Bernier  H Driguez  M Desrochers 《Gene》1983,26(1):59-65
A gene coding for xylanase synthesis in Bacillus subtilis was isolated by direct shotgun cloning using Escherichia coli as a host. Following partial digestion of B. subtilis chromosomal DNA with PstI or EcoRI restriction enzymes, fragments ranging from 3 to 7 kb were introduced into the PstI or EcoRI sites of pBR325. Transformed colonies having lost either the ampicillin or chloramphenicol resistance markers were screened directly on 1% xylan plates. Out of 8000 transformants, ten xylanase-positive clones were identified by the clearing zone around lysozyme-treated colonies. Further characterization of one of the clones showed that the xylanase gene was present in a 3.9-kb insert within the PstI site of the plasmid pBR325. Retransformation of E. coli strain with the xylanase-positive hybrid plasmid pRH271 showed 100% transformation to xylanase production. The intracellular xylanase produced by the transformed E. coli was purified by ion exchange and gel permeation chromatography. The electrophoretic mobility of the purified xylanase indicated an Mr of 22 000.  相似文献   

14.
The gene for leader peptidase, termed lep, was mapped to the region between purI and nadB at min 54 to 55 on the Escherichia coli chromosome. Mapping involved (i) cloning the gene into the plasmid pBR322, (ii) transforming the plasmid into a polA strain where it cannot replicate autonomously, (iii) selecting by ampicillin resistance the rare cell in which the plasmid had recombined into the chromosome, and (iv) mapping the chromosomal site of drug resistance (and thus plasmid integration) by Hfr matings and P1 transduction. The map position was confirmed by an assay of the enzyme content of cells bearing an F' factor which covered that region of the chromosome.  相似文献   

15.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

16.
pBR322-Red是一种新型重组工程系统,它携带了λ-噬菌体Red重组酶基因和一系列调控元件.对pBR322-Red最优重组条件进行探索后应用该质粒提供的体内同源重组功能,在菌株W3110体内,对染色体上的lac操纵子进行了基因修饰,包括:①运用kan/sacB选择反选择方法和重叠引物方法敲除了阻遏基因lacⅠ,②运用kan/sacB选择反选择方法和线性双链DNA介导的DNA重组方法将报告基因lacZ敲入lacA和lacY的位置,并且首次测定了报告基因lacZ在这三个结构基因位置的组成性表达情况.结果表明运用不同的重组策略,pBR322-Red系统都能方便有效地对大肠杆菌W3110染色体进行基因敲除和敲入修饰.  相似文献   

17.
E Resnik  D C LaPorte 《Gene》1991,107(1):19-25
We have developed a general method for the introduction of any cloned sequence into the chromosome of Escherichia coli. This method employs an Hfr strain which carries a fragment of bla (the pBR322 gene imparting ampicillin resistance) between lacI and lacZ. Plasmid-borne inserts which are flanked by sequences from bla and lacZ can be introduced at this locus by homologous recombination. The isolation of recombinants is enhanced by selection for transfer of an integrated copy of the plasmid during conjugation. Once introduced into the chromosome, the inserted sequences can be transferred to other strains by conventional methods such as P1 transduction or conjugation. This method is suitable for the transfer of any cloned sequence to the chromosome and is particularly well suited to the construction of chromosomal gene and operon fusions with lacZ.  相似文献   

18.
F Bolivar 《Gene》1978,4(2):121-136
In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.  相似文献   

19.
An Escherichia coli strain, B-62, that was isolated from a clinical source and was epidemiologically unrelated to E. coli K-12 was the source of chromosomal DNA for a sucrose utilization system (Scr+) in the construction of a plasmid, pST621. The cloned insert of a gene encoding Scr+ in pST621 conferred a sucrose-positive phenotype onto transformed cells of E. coli K-12 derivatives. Sucrase activity of the transformants was as high as that which would correspond to a "gene dosage effect" of a vector plasmid pBR322, whereas the transformants' sucrose uptake activity was always lower than that of E. coli B-62. A region within an XhoI-SacI fragment (3.2 kb) of pBR322-glyA was replaced in the construction of another plasmid, pST5R7, by a fragment (about 2.6 kb) of pST622 containing the gene encoding Scr+. A genetically stable Scr+ derivative of E. coli K-12 was obtained by introducing the gene encoding Scr+ onto E. coli chromosome via homologous recombination between pST5R7 and the chromosome and subsequent plasmid segregation. The use of low-copy-number plasmid RP4 as a cloning vector was also effective for enhancing the stability of Scr+. Tryptophan producers E. coli SGIII1032S, in which the gene encoding Scr+ was cloned onto the chromosome, and E. coli SGIII1032, which carried Scr+ plasmid RP4.5R7, produced from 6% sucrose in shake flasks (33 degrees C, 96 h) 2.3 and 5.7 g of tryptophan per liter, respectively.  相似文献   

20.
An Escherichia coli strain, B-62, that was isolated from a clinical source and was epidemiologically unrelated to E. coli K-12 was the source of chromosomal DNA for a sucrose utilization system (Scr+) in the construction of a plasmid, pST621. The cloned insert of a gene encoding Scr+ in pST621 conferred a sucrose-positive phenotype onto transformed cells of E. coli K-12 derivatives. Sucrase activity of the transformants was as high as that which would correspond to a "gene dosage effect" of a vector plasmid pBR322, whereas the transformants' sucrose uptake activity was always lower than that of E. coli B-62. A region within an XhoI-SacI fragment (3.2 kb) of pBR322-glyA was replaced in the construction of another plasmid, pST5R7, by a fragment (about 2.6 kb) of pST622 containing the gene encoding Scr+. A genetically stable Scr+ derivative of E. coli K-12 was obtained by introducing the gene encoding Scr+ onto E. coli chromosome via homologous recombination between pST5R7 and the chromosome and subsequent plasmid segregation. The use of low-copy-number plasmid RP4 as a cloning vector was also effective for enhancing the stability of Scr+. Tryptophan producers E. coli SGIII1032S, in which the gene encoding Scr+ was cloned onto the chromosome, and E. coli SGIII1032, which carried Scr+ plasmid RP4.5R7, produced from 6% sucrose in shake flasks (33 degrees C, 96 h) 2.3 and 5.7 g of tryptophan per liter, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号