首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of flow and electrolyte concentration of parotid saliva were measured before, during and after intravenous and contralateral intracarotid infusion of KCl (0.5 mol.1(-1)) and NaCl (0.5 mol.1(-1)) at 385-625 mumol. min(-1) for 40 min into 5 sheep. In intact conscious sheep contralateral intracarotid infusion of KCl caused marked depression of salivary secretion in all experiments whereas infusion of NaCl had no consistent effect on flow. Intravenous infusion of KCl into the intact conscious sheep caused a slight depression of salivary secretion but minimum flow was significantly higher than that during intracarotid infusion. When the sheep were anaesthetized salivary flow rates were low and contralateral intracarotid infusion of KCl either had no effect on flow or caused an increase in flow. After ipsilateral cervical sympathectomy contralateral intracarotid infusion of KCl into the conscious sheep caused a marked depression of salivary flow similar to that occurring when the sheep were intact. After section of the secretomotor nerve of the gland salivary flow rates were low and contralateral intracarotid infusion of KC1 had no effect on flow. The salivary flow responses of the sheep were consistent, regardless of whether the KCl infusions were given within 24 h or 1-2 weeks after cervical sympathectomy or secretomotor nerve section. Salivary sodium concentration was negatively correlated with salivary flow in all experiments. It was concluded that potassium acted at a site located in the head but by direct action on the salivary gland. The depression of salivary secretion by hyperkalaemia resulted from a decline in neural activity in the parasympathetic secretomotor innervation of the parotid gland.  相似文献   

2.
Summary Intracarotid infusion of isoprenaline, either alone or in combination with acetylcholine infusion was used to stimulate salivation by the mandibular glands of anaesthetized red kangaroos. Isoprenaline alone (0.20–1.25 mol·kg–1·min–1) elicited flow rates ranging from 0.014 to 0.239 ml·min–1 (1.21–28.1 l·g gland–1·min–1). Salivary concentrations of sodium, chloride, phosphate and urea were negatively correlated with flow, whereas potassium, calcium, magnesium, hydrogen ion, bicarbonate, protein, and osmolality were poorly correlated with flow. Relative to cholinergic saliva produced at equivalent flow rates, isoprenaline-evoked saliva had higher osmolality, saliva/plasma urea ratios and concentrations of protein, potassium, magnesium, bicarbonate, and phosphate, but lower sodium, chloride and hydrogen ion levels. At a steady salivary flow (0.5 ml·min–1), superimposition of isoprenaline infusion (0.15 mol·kg–1·min–1) on a pre-existing acetylcholine infusion reduced the rate of acetylcholine administration necessary to maintain flow, increased osmolality and the concentrations of protein, urea, potassium, calcium, magnesium, bicarbonate and phosphate and decreased sodium, chloride and hydrogen ion in the saliva. Salivary amylase activity was low and highly variable and the amylase activity/protein ratio fell substantially during isoprenaline stimulation. These results support the conclusion that the enzyme is of extrinsic origin. The response of the kangaroo mandibular gland to isoprenaline stimulation was very similar to that reported for rat mandibular gland, suggesting that the same ion transport phenomena underlie mandibular secretion in both species and probably in therian mammals generally.  相似文献   

3.
Adult sheep were given intravenous infusions of a solution of Na2HPO4 and the effects on parotid salivary composition and on plasma parathyroid hormone levels were studied. Infusion of the phosphate solution resulted in increases in the concentration of inorganic phosphate in the plasma and to proportional increases in the concentration and amount of phosphate secreted in the saliva. There was, however, no evidence that the salivary response was dependent upon a change in endogenous parathyroid hormone release. In other studies infusion of bovine parathyroid hormone or stimulation of endogenous hormone release through infusion of EDTA both led to a fall in the concentration of inorganic phosphate in the plasma and to a fall in the concentration and amount of phosphate secreted in the saliva. Taken together these results suggest that the major factor affecting salivary phosphate secretion in these studies was the concentration of inorganic phosphate in the plasma. Parathyroid hormone does not appear to have any direct effect on salivary phosphate secretion in the sheep though it may indirectly influence phosphate secretion through its effects on plasma inorganic phosphate level.  相似文献   

4.
The rate of flow of plasma and blood through the head of conscious sheep was measured before, during and after the intravenous infusion of 1 mol. 1(-1) NaCl and 1 mol. 1(-1) KCl at 0-8--1-0 ml. min-1 for 2 hours. The plasma flow was estimated by indicator-dilution technique using sodium para-aminohippurate which was shown to be a satisfactory indicator substance. Short periods of rumination were found to cause marked increases in cephalic blood flow. The infusion of hyperosmotic sodium chloride caused no consistent changes in the rates of cephalic plasma flow and blood flow. During potassium infusion plasma and blood flows increased as the plasma potassium concentration increased up to approximately 6 mmol.1(-1). Further increases in plasma potassium concentration were associated with a progressive return of these flow rates to or below the pre-infusion levels. This pattern of change in the rate of plasma flow through the head of the sheep was very similar to that previously reported for renal plasma flow during hyperkalaemia in conscious sheep. At its maximum the cephalic plasma flow was 1-163+/-0-029 (S.E. of mean) times the pre-infusion flow rate. Cephalic blood flow tended to reach maximum rates at slightly higher plasma potassium concentrations and thereafter, to fall more slowly than the plasma flow due to concomitant increases in haematocrit. Maximum cephalic blood flow was 1-176+/-0-032 times the pre-infusion flow rate. The lowest rates of cephalic plasma and blood flow occurred during the first 30 minutes following cessation of potassium infusion.  相似文献   

5.
Summary The effects of carbonic anhydrase inhibitors on secretion by macropodine parotid and mandibular glands were investigated using anaesthetized red kangaroos. In the parotid gland, acetazolamide (500 mol·l-1) reduced a stable acetylcholine-evoked, half-maximal flow rate of 2.02±0.034 to 0.27±0.023 ml·min-1 (87% reduction). Concurrently, salivary bicarbonate concentration and secretion fell (129.4±1.46 to 80.9±1.63 mmol·l-1 and 264.8±7.96 to 22.3±2.30 mol·min-1, respectively), phosphate and chloride concentrations rose (14.0±0.79 to 27.6±0.85 mmol·l-1 and 5.6±0.25 to 27.5±1.32 mmol·l-1, respectively), sodium concentration and osmolality were unaltered, and potassium concentration fell (8.8±0.33 to 6.4±0.29 mmol·l-1). High-rate cholinergic stimulation during acetazolamide blockade was unable to increase salivary flow beyond 11±0.9% of that for equivalent unblocked control stimulation. However, superimposition of isoprenaline infusion on the acetylcholine stimulation caused a three-fold increase in the blocked flow rate. These treatments were accompanied by small increases in salivary phosphate and chloride concentrations but not bicarbonate concentration. Methazolamide infusion caused similar changes in parotid secretion. In the mandibular gland, acetazolamide infusion had no effect on salivary flow rate during either low- or high-level acetylcholine stimulation. Acetazolamide caused no alterrations in salivary electrolyte secretion at low flow rates, but curtailed the rise in bicarbonate concentration associated with high-level acetylcholine stimulation. Acetazolamide administration did not affect the increase in salivary flow rate associated with isoprenaline infusion, but did block the concomitant increase in bicarbonate concentration and secretion substantially. It was concluded that neither cholinergic nor adrenergic stimulation of mandibular fluid secretion depends on secretion of bicarbonate derived from catalysed hydration of CO2, but a substantial proportion of the increase in bicarbonate secretion during isoprenaline administration, which is probably ductal in origin, is so dependent. In contrast to other salivary glands, including the ovine parotid, fluid secretion by the kangaroo parotid gland during cholinergic stimulation is largely dependent (about 90%) on secretion of bicarbonate derived from hydration of CO2 catalysed by glandular carbonic anhydrase. Fluid secretion during adrenergic stimulation is not bicarbonate dependent.Abbreviations b.w. body weight - PAH p-aminohippurate - PCO2 partial pressure carbon dioxide - PCO2 partial pressure of oxygen  相似文献   

6.
The osmotic pressure of the rumen contents and also of the blood was altered by intraruminal administration of water or hypertonic solutions. It was found that alterations in osmotic pressure were accompanied by inverse changes in the flow rate of mixed saliva. Intravenous infusion of hypertonic solutions, causing elevation of the osmotic pressure of the blood without affecting that of the rumen, also caused a reduction of salivary secretion rate. The flow rates of both parotid and residual saliva were affected. When strongly hypertonic solutions of sodium or potassium salts were infused into the rumen, or sodium salts or urea were infused into the blood, the concentration of those substances increased in the saliva. Other treatments had little effect on salivary composition.  相似文献   

7.
1. Continuous electrical stimulation at low frequency (5 Hz) and short pulse duration (500 microseconds) of the cervical sympathetic trunk for periods up to 15 min caused no obvious flow from the parotid or mandibular glands of the red kangaroo. 2. Higher frequencies combined with longer pulse durations caused both glands to secrete. Flow reached maximum in less than 3 min and then declined but, on cessation of stimulation, flow increased again for a short period. This flow response may be caused by the interaction of the secretory response with myoepithelial contraction. 3. The parotid saliva had substantially higher protein, phosphate and hydrogen ion concentrations, and lower sodium concentrations than cholinergic parotid saliva. The low pH indicates bicarbonate concentrations far lower than in other sympathetic salivas. 4. The mandibular saliva had higher protein, urea and potassium, and lower chloride and hydrogen concentrations than cholinergic mandibular saliva.  相似文献   

8.
Intracarotid infusions of l-phenylephrine at 1.0 nmol.kg(-1).min(-1) or(.)10 nmol.kg(-1).min(-1) were accompanied by increases in salivary protein, urea, magnesium and bicarbonate, and by decreases in osmolality, hydrogen ion activity, sodium, potassium and chloride relative to cholinergically stimulated saliva. Intravenous infusions of phenylephrine at the same dose rates had much less effect on salivary composition with the differences between the routes of administration being greatest for the higher dose rate. Propranolol administered with phenylephrine via the carotid artery, at an antagonist:agonist ratio of 10:1, was much more effective in blocking the phenylephrine-induced changes in salivary composition than equimolar infusion of phentolamine with phenylephrine. Simultaneous intracarotid infusions of either a beta(1)-antagonist (CGP20712A) or a beta(2)-antagonist (ICI118551) with phenylephrine showed that ICI118551 was more potent than CGP20712A at preventing the changes in salivary composition associated with phenylephrine administration. It was concluded that alpha(1)-adrenoreceptors were not present in functionally significant numbers in the gland and that the effect of phenylephrine on the kangaroo mandibular was mediated by beta-adrenoreceptors predominantly of the beta(2)-subtype. As the phenylephrine dose rates in the kangaroos were comparable with those used to determine alpha-adrenergic responses of eutherian salivary glands and as both propranolol and phentolamine appeared to have minor beta-sympathomimetic activity, at least one subtype of beta-adrenoreceptors in macropods may not be identical to its eutherian counterpart.  相似文献   

9.
The aim of this study was to monitor composition and rate of secretion of rat parotid and submandibular/sublingual saliva following local single doses of X-rays ranging from 5 to 20 Gy. Pilocarpine-stimulated samples of parotid and submandibular/sublingual saliva were simultaneously collected with miniaturized Lashley cups before and 1-30 days after irradiation. The lag phase (period between injection of pilocarpine and start of the secretion) and flow rate were recorded and the concentrations of sodium, potassium, calcium, phosphate, and amylase were measured. With increasing dose and time, the salivary flow rate as well as sodium concentration decreased, while potassium concentrations increased throughout the follow-up period. The lag phase and the concentration of amylase reached their maximum at 3 and 10 days after irradiation, respectively. The changes in lag phase and flow rate were most obvious after doses of 15 or 20 Gy and showed a great similarity for parotid and submandibular/sublingual saliva. No dose-response relationship was observed for the changes in concentrations of calcium and phosphate. It is concluded that for radiation doses of 10 Gy and above, irreversible changes (lag phase, flow rate, potassium, sodium) were observed. A saturation of the irradiation effects (lag phase, flow rate) seems to exist at doses larger than 15 Gy. No significant differences were observed between the radiation-induced functional changes in parotid and submandibular/sublingual salivary gland tissue.  相似文献   

10.
Seven goats were given medetomidine 5 μg/kg as an iv bolus injection. Venous blood samples were taken repeatedly and urine was collected continuously via a catheter up to 7h after the injection. Medetomidine caused deep clinical sedation. Base excess, pH and PCO2 in venous blood rose after medetomidine administration. There were no significant changes in plasma concentrations of sodium, calcium, magnesium, creatinine or osmolality, whereas potassium and bicarbonate concentrations increased, and phosphate and chloride decreased. Medetomidine increased plasma glucose concentration, and in 4 of 7 goats glucose could also be detected in urine. Medetomidine did not influence urine flow rate, free water clearance, bicarbonate and phosphate excretion or pH, but renal chloride, sodium, potassium, calcium, magnesium and creatinine excretion were reduced. The results suggest that the metabolic alkalosis recorded after medetomidine administration is not caused by increased renal acid excretion.  相似文献   

11.
The effects of intravenous carrier-free salmon calcitonin on renal clearances of phosphate, calcium, magnesium, sodium and potassium were studied in male parathyroid-ectomized (PTX) and intact rats. Both natural and synthetic hormone, when infused at constant rates (0.005 approximately 0.5 MRC U/hr), produced a rapid increase (peaking at about 60-90 min) in phosphate clearance. However, the maximal increase was transient in nature in PTX rats. In intact rats, the phosphaturic response was somewhat more pronounced and the decline after the peak was rather modest. When a large amount (4 MRC U) of calcitonin was given in divided doses, the second dose produced a lesser extent of phosphaturia in both intact and PTX rats. The phosphaturic response was accompanied by an increase in sodium and potassium clearances in PTX rats and by an increase in potassium clearance in intact rats. A fall in the apparent clearance values for calcium and magnesium occurred and was maintained throughout the infusion period of hormone in both intact and PTX rats. In conclusion, PTX rats respond to the intravenous administration of salmon calcitonin with a transient phosphaturic response which is accompanied by parallel diuresis of sodium and potassium along with sustained retention of calcium and magnesium by the kidney.  相似文献   

12.
1. The role of exogenous parathyroid hormone (PTH) and stimulation or inhibition of endogenous hormone release, on the parotid gland of normal and thyroparathyroidectomized (t.x.p.t.x.) goats was studied. 2. The intravenous infusion of PTH and EDTA produced a transitory rise in saliva flow rate in intact animals. In t.x.p.t.x. goats the flow of saliva decreased transiently throughout the infusion. 3. The calcium levels in parotid saliva was unchanged throughout the infusion of PTH, EDTA, calcium gluconate both alone or with propranolol, in either intact or t.x.p.t.x. animals. 4. The parathyroid hormone infusion caused an increase in salivary phosphate concentration in both intact and operated goats. The effects of PTH upon the salivary flow and concentration of P are discussed.  相似文献   

13.
A defined medium of low osmolarity was developed permitting growth of Rhizobium meliloti with generation times of approximately 2.8 h doubling-1. The effects of sodium, potassium, magnesium, ammonium, chloride, sulfate, phosphate, bicarbonate and acetate ions on the growth rate of R. meliloti were determined. Sodium, potassium and ammonium ions had little effect on growth at concentrations of 100 mEq or less; magnesium ion inhibited growth severely at concentrations of 50 mEq (25 mM). Of the anions, chloride and sulfate appeared to have little effect while phosphate, bicarbonate, and acetate inhibited growth at concentrations of as little as 25 mEq. The addition of proline, glutamate, or betaine to cells growing in inhibitory concentrations of NaCl did not relieve the inhibition. When grown in the presence of inhibitory levels of NaCl, the intracellular concentration of glutamate but not of proline or gamma amino butyric acid increased 5-fold.  相似文献   

14.
Intracarotid infusions of l-phenylephrine at 1.0 or 10 nmol kg(-1) min(-1) were accompanied by increases in salivary amylase activity, protein, potassium, magnesium and chloride relative to cholinergically-stimulated saliva. Intravenous infusions of phenylephrine at the same dose rates had a lesser effect on salivary composition particularly protein. Propranolol administered with phenylephrine via the carotid artery, at an antagonist/agonist ratio of 10:1, was much more effective in blocking the phenylephrine-induced changes in salivary composition than equimolar infusion of phentolamine with phenylephrine. It was concluded that alpha(1)-adrenoreceptors were not present in functionally significant numbers in the gland and that the effect of phenylephrine on the kangaroo parotid was mediated by beta-adrenoreceptors. As the phenylephrine dose rates in the kangaroos were comparable with those used to determine alpha-adrenergic responses of eutherian salivary glands and as phentolamine appeared to have minor beta-sympathomimetic activity, at least one subtype of beta-adrenoreceptors in macropods may not be identical to its eutherian counterpart.  相似文献   

15.
Vasopressin (140 muU/min) was infused intravenously into 12 conscious merino ewes for 2 hr. Urine flow rate and free water clearance were consistently reduced. There was no effect upon renal plasma flow, glomerular filtration rate or the rate of excretion of sodium, potassium, magnesium, chloride or phosphate. Although all animals received 75 mmol calcium chloride into the rumen on the previous day, five commenced the experiment with calcium excretion rates of less than 1 mumol/min. In these, vasopressin further decreased calcium excretion. In seven animals with calcium excretion rates between 2 and 20 mumol/min vasopressin had no effect upon either total calcium or free ionized calcium excretion rate.  相似文献   

16.
Possible mechanisms of primary fluid formation by macropodine parotid glands were investigated in anaesthetized red kangaroos using ion transport inhibitors. Carotid plasma amiloride concentrations of 0.05–0.5 mmol·l-1 progressively reduced a stable acetylcholine-evoked half-maximal flow rate of 2.0±0.04 to 0.22±0.024 ml·min-1 (mean±SEM). Concurrently, saliva bicarbonate concentration and secretion fell (135±1.6 to 67±1.7 mmol·l-1 and 272±7.6 to 15±2.6 mol·min-1, respectively); [phosphate], [chloride] and [sodium] rose and [potassium] and osmolality were unaltered. High-rate cholinergic stimulation did not increase saliva flow beyond 11±1.0% of that for equivalent pre-amiloride stimulation. Equipotent levels of amiloride and methazolamide given concurrently were no more effective at blocking flow and bicarbonate secretion than when given separately. Furosemide (up to 2 mmol·l-1), bumetanide (up to 0.2 mmol·l-1) and ethacrynate (1 mmol·l-1) in carotid plasma had no effect on salivary flow or ion concentrations. During methazolamide blockade, furosemide did not curtail the concurrent increase in salivary [chloride]. Chlorothiazide at 0.25–1.0 mmol·l-1 caused progressive depression of saliva flow and [bicarbonate], and elevation of [chloride]. 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid at 0.1 mmol·l-1 was without effect, whereas at 0.5 mmol·l-1 it stimulated fluid secretion and increased saliva [protein], [sodium], [potassium], [bicarbonate] and osmolality. Concurrently, mean arterial blood pressure and pulse pressure fell and heart rate, haematocrit and carotid artery plasma flow rose. These responses were absent if saliva flow was kept constant by reduction in cholinergic stimulation during 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid administration. It is concluded that secretion of primary fluid by the kangaroo parotid is initiated mainly (>90%) by secretion of bicarbonate which is formed in the endpiece cells from CO2 delivered by the circulation. No evidence was found for initiation of fluid secretion by chloride transport involving basolateral Na+-K+-2Cl- symports, Na+-Cl- symports or Cl-/HCO 3 - antiports.Abbreviations CA carbonic anhydrase - CAI carbonic anhydrase inhibitors - MAP mean arterial blood pressure - PAH p-aminohippurate - SITS 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid  相似文献   

17.
Several studies reported that ursodeoxycholate (but not its conjugates), when administered intravenously, increased the biliary bicarbonate concentration in the rat (1–3). At the same time, a complete dissociation between bile flow and the bile salt excretion rate was produced in the second hr of infusion (2). In order to examine whether this property was due to the 7β-hydroxy group in its molecular structure, the choleretic property of ursocholate (3α, 7β, 12α-trihydroxy-5β-cholanoic acid) was investigated in male Wistar rats. Immediately after the start of iv infusion of ursocholate at a rate of 1.2 μmole/min/100 g b. wt., both the bile flow and bile salt excretion rate began to increase. However, unlike with ursodeoxycholate, the bile salt excretion rate continued to be high in the second and third hr of infusion, while the bile flow rate gradually increased. Furthermore, the bicarbonate concentration in the bile fell slightly 10 min after the start of ursocholate infusion. Although the concentration tended to return to the baseline value before the bile salt infusion in the later period of observation, no significant increase in bicarbonate concentration was observed during the whole observation period. These properties were quite similar to those of cholate rather than those of ursodeoxycholate. However, a cholate infusion at the same rate of 1.2 μmole/min/100 g b.wt. caused a cholestasis as early as 20 to 30 min after the start of an infusion. These results suggest that the previously reported properties of ursodeoxycholate (that it causes a complete dissociation between the bile flow and bile salt excretion rate in the second hr and that it increases the biliary bicarbonate concentration) were not due to the 7β-hydroxy group in its steroidal structure, and that the choleretic property of ursocholate is similar to its 7α-hydroxy epimar, cholate. However, the much lower cytotoxicity of ursocholate compared to cholate appears to be due to the 7β-hydroxy group that ursocholate has.  相似文献   

18.
Literature data indicates that measurement of certain salivary constituents might serve as a useful diagnostic/prognostic tool in the patients with oral squamous cell carcinoma (OSCC). In 24 patients with OSCC (60 +/- 2.5 yrs) and in 24 controls (24 +/- 3.7 yrs) we have determined levels of salivary magnesium, calcium, copper, chloride, phosphate, potassium, sodium, total proteins and amylase. Sodium, potassium and chloride were determined by indirect potentiometry whereas copper, magnesium and phosphate were determined by atomic absorption spectrophotometry. Total proteins were determined by pyrogalol colorimetric method. Amylase levels were determined by continued colorimetric method. Statistical analysis was performed by use of chi2 test and Spearman's correlation test. The results of this study indicate that the concentrations of sodium and chloride were significantly elevated in patients with OSCC when compared to the controls. However, level of total protein was significantly decreased when compared to the healthy controls. Furthermore, there was a negative correlation between alcohol consumption and total protein concentration in patients with oral carcinoma. We might conclude that in patients with OSCC increased salivary sodium and chloride might reflect their overall dehydration status due to alcohol consumption rather than consequence of OSCC itself.  相似文献   

19.
To evaluate the contribution of plasma volume expansion per se on acute inhibition of renin release by sodium chloride infusion, renin responses to comparable plasma volume expansion with intravenous infusions of sodium chloride, sodium bicarbonate, or albumin were studied in separate groups of sodium chloride-depleted rats. In addition, urinary prostaglandin E2 (PGE2) excretion rate was compared in the saline- and sodium bicarbonate-infused animals to evaluate the relationship between acute changes in renin release and intrarenal PGE2 synthesis. All three groups were plasma volume-expanded by approximately 55%. Plasma renin activity (PRA) decreased in response to saline (12.3 +/- 1.0 to 6.7 +/- 0.7 ng AI/ml/hr; P less than 0.01) whereas PRA did not change with sodium bicarbonate (11.3 +/- 1.4 to 10.2 +/- 1.5) or albumin (9.9 +/- 0.7 to 8.2 +/- 1.0). The rate of PGE2 excretion was not changed by either saline (72.2 +/- 13.1 to 72.3 +/- 18.7 pg/min) or sodium bicarbonate infusion (70.7 +/- 8.8 to 64.9 +/- 7.0). These results support the hypothesis that acute suppression of PRA by infusion of saline is not dependent upon volume expansion per se. In confirmation of earlier observations, inhibition of renin release by sodium chloride was related to chloride. Finally, the results suggest that the renal tubular mechanism for inhibition of renin release by sodium chloride is not related to overall changes in renal PGE2 synthesis in the rat.  相似文献   

20.
Intracarotid infusions of noradrenaline (0.3 nmol.kg(-1) x min(-1)) stimulated salivary fluid secretion and caused increases in salivary concentrations of protein, potassium. magnesium. chloride and phosphate, and decreases in bicarbonate. These effects of intracarotid noradrenaline were not reduced by simultaneous intracarotid infusion of phentolamine (3.0 nmol.kg(-1) x min(-1)) but were significantly greater than the responses accompanying intravenous noradrenaline infusion. Concomitant administration of the beta-antagonist, CGP20712A, were much more effective in blocking the noradrenaline-induced changes in salivary composition than equimolar infusions of the beta2-antagonist, ICI118551, thereby confirming the presence of beta1-adrenoreceptors. Intracarotid infusion of salbutamol at 0.6 nmol x kg(-1) x min(-1) and 6.0 nmol x kg(-1) x min(-1) caused increasing but qualitatively similar changes in salivary composition to intracarotid noradrenaline but was less effective than noradrenaline in augmenting salivary protein release. Equimolar intravenous infusions of salbutamol and noradrenaline were equally potent in altering salivary electrolyte concentrations but salbutamol by this route had less effect on protein release and fluid secretion. Concurrent intravenous and intracarotid infusions of beta1-(CGP) and beta2-(ICI) antagonists with intracarotid salbutamol showed that the beta2-antagonist was more potent than the beta1-antagonist by the intracarotid route thereby demonstrating the presence of glandular beta2-receptors and eliminating the possibility that the response to salbutamol was due totally by reflex increases in general sympathetic tone triggered by lowered blood pressure. It was concluded that the kangaroo parotid has functional beta1- and beta2-adrenoreceptor subtypes in endpieces whereas the data provide little support for either adrenoreceptor subtype being present in the excurrent duct system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号