首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), modified eosin methylene blue (MEMB) agar, and modified SD-39 (MSD) agar in recovering a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 and five non-O157 strains of E. coli heated in tryptic soy broth at 52, 54, or 56 degrees C for 10, 20, and 30 min was determined. Nonselective TSA supported the highest recovery of heated cells. Significantly (P < or = 0.05) lower recovery of heat-stressed cells was observed on MSMA than on TSA, MEMB agar, or MSD agar. The suitability of MEMB agar or MSD agar for recovery of E. coli O157:H7 from heated or frozen (-20 degrees C) low- or high-fat ground beef was determined. Recovery of E. coli O157:H7 from heated ground beef was significantly (P < or = 0.05) higher on TSA than on MEMB agar, which in turn supported higher recovery than MSD agar did; MSMA was inferior. Recovery from frozen ground beef was also higher on MEMB and MSD agars than on MSMA. Higher populations were generally recovered from high-fat beef than from low-fat beef, but the relative performance of the recovery media was the same. The inability of MSMA to recover stressed cells of E. coli O157:H7 underscores the need to develop a better selective medium for enumerating E. coli O157:H7.  相似文献   

2.
Tryptone soya agar (TSA) and three selective media, BCM1M O157:H7(+) agar (BCM), modified eosin methylene blue agar (MEMB), and sorbitol MacConkey agar (SMAC) were evaluated for recovery of two strains of E. coli O157:H7 (salami and cider isolates) heated at 56, 58, and 60C for up to 60 min in tryptone soya broth (TSB). TSA and MEMB were equally effective at recovery of heat-stressed (56, 58, and 60C) E . coli O 157:H7 and superior to SMAC and BCM (P 0.05). When heated at 56 and 58C, recovery of E. coli O157:H7 on MEMB and TSA was not significantly different (P > 0.05); recovery was poorer on SMAC, followed by BCM (P 0.05). There was no significant difference in recovery of E. coli O157:H7 on BCM and SMAC when strains were heated at 60C (P > 0.05).  相似文献   

3.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

4.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

5.
A virulent phage, named PP01, specific for Escherichia coli O157:H7 was isolated from swine stool sample. The phage concentration in a swine stool, estimated by plaque assay on E. coli O157:H7 EDL933, was 4.2x10(7) plaque-forming units per g sample. PP01 infects strains of E. coli O157:H7 but does not infect E. coli strains of other O-serogroups and K-12 strains. Infection of an E. coli O157:H7 culture with PP01 at a multiplicity of infection of two produced a drastic decrease of the optical density at 600 nm due to cell lysis. The further incubation of the culture for 7 h produced phage-resistant E. coli O157:H7 mutant. One PP01-resistant E. coli O157:H7 mutant had lost the major outer membrane protein OmpC. Complementation by ompC from a O157:H7 strain but not from a K-12 strain resulted in the restoration of PP01 susceptibility suggesting that the OmpC protein serves as the PP01 receptor. DNA sequences and homology analysis of two tail fiber genes, 37 and 38, responsible for the host cell recognition revealed that PP01 is a member of the T-even bacteriophages, especially the T2 family.  相似文献   

6.
We studied injury of Escherichia coli O157:H7 cells in 11 food items during freeze storage and methods of isolating freeze-injured E. coli O157:H7 cells from foods. Food samples inoculated with E. coli O157:H7 were stored for 16 weeks at -20 degrees C in a freezer. Noninjured and injured cells were counted by using tryptic soy agar and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Large populations of E. coli O157:H7 cells were injured in salted cabbage, grated radish, seaweed, and tomato samples. In an experiment to detect E. coli O157:H7 in food samples artificially contaminated with freeze-injured E. coli O157:H7 cells, the organism was recovered most efficiently after the samples were incubated in modified E. coli broth without bile salts at 25 degrees C for 2 h and then selectively enriched at 42 degrees C for 18 h by adding bile salts and novobiocin. Our enrichment method was further evaluated by isolating E. coli O157:H7 from frozen foods inoculated with the organism prior to freezing. Two hours of resuscitation at 25 degrees C in nonselective broth improved recovery of E. coli O157:H7 from frozen grated radishes and strawberries, demonstrating that the resuscitation step is very effective for isolating E. coli O157:H7 from frozen foods contaminated with injured E. coli O157:H7 cells.  相似文献   

7.
Pre-treatment of a 5-h enrichment culture with an automated immunoconcentration (ICE) system greatly improved the isolation of Escherichia coli O157:H7 from spiked heifer faecal samples. Enrichment samples plated directly onto sorbitol MacConkey agar (SMAC) and SMAC agar supplemented with cefixime and potassium tellurite (CT-SMAC) showed recovery rates of 8% and 56%, respectively. However, after ICE treatment, E. coli O157:H7 was recovered from 92% of the samples on SMAC and 100% on CT-SMAC. Immunoconcentration analysis of heifers' faecal samples collected from a slaughter-house in France, during March to June 1998, showed that 1% (three of 300) was positive for E. coli O157:H7. Phenotypic and genotypic analysis showed that all three isolates carried both the O157 and H7 antigens, did not ferment sorbitol or had beta-glucuronidase activity and carried trait virulence factors for E. coli O157:H7 (uidA allele, eaeA and pO157 plasmid). However, only one strain was toxigenic and this strain produced a single toxin, namely verotoxin 2.  相似文献   

8.
The survival of unheated and heat-stressed (52 degrees C, 30 min) cells of Escherichia coli O157:H7 inoculated into tryptic soy broth (TSB) adjusted to various pHs (6.0, 5.4, and 4.8) with lactic acid and various water activities (a(w)s) (0.99, 0.95, and 0.90) with NaCl and incubated at 5, 20, 30, and 37 degrees C was studied. The performance of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), and modified eosin methylene blue agar in supporting colony development of incubated cells was determined. Unheated cells of E. coli O157:H7 grew to population densities of 10(8) to 10(9) CFU ml-1 in TSB (pHs 6.0 and 5.4) at an a(w) of 0.99. Regardless of the pH and a(w) of TSB, survival of E. coli O157:H7 was better at 5 degrees C than at 20 or 30 degrees C. At 30 degrees C, inactivation or inhibition of growth was enhanced by reduction of the a(w) and pH. A decrease in the a(w) (0.99 to 0.90) of TSB in which the cells were heated at 52 degrees C for 30 min resulted in a 1.5-log10 reduction in the number of E. coli O157:H7 cells recovered on TSA; pH did not significantly affect the viability of cells. Recovery was significantly reduced on MSMA when cells were heated in TSB with reduced pH or a(w) for an increased length of time. With the exception of TSB (a(w), 0.90) incubated at 37 degrees C, heat-stressed cells survived for 24 h in recovery broth. TSB (a(w), 0.99) at pH 6.0 or 5.4 supported growth of E. coli O157:H7 cells at 20 or 37 degrees C, but higher numbers of heated cells survived at 5 or 20 degrees C than at 37 degrees C. The ability of unheated and heat-stressed E. coli O157:H7 cells to survive or grow as affected by the a(w) of processed salami was investigated. Decreases of about 1 to 2 log10 CFU g-1 occurred soon after inoculation of salami (pHs 4.86 and 4.63 at a(w)s of 0.95 and 0.90, respectively). Regardless of the physiological condition of the cells before inoculation into processed salami at an a(w) of either 0.95 or 0.90, decreases in populations occurred during storage at 5 or 20 degrees C for 32 days. If present at < or = 100 CFU g-1, E. coli O157:H7 would unlikely survive storage at 5 degrees C for 32 days. However, contamination of salami with E. coli O157:H7 at 10(4) to 10(5) CFU g-1 after processing would pose a health risk to consumers for more than 32 days if storage were at 5 degrees C. Regardless of the treatment conditions, performance of the media tested for the recovery of E. coli O157:H7 cells followed the order TSA > modified eosin methylene blue agar > MSMA.  相似文献   

9.
There was no significant difference (P > 0.05) in the percentages of Escherichia coli O157:H7 cells recovered on BCM O157:H7 (+) agar (69.7%) and MacConkey sorbitol agar containing 5-bromo-4-chloro-3-indoxyl-beta-D-glucuronic acid (MSA-BCIG) (76.8%) vs Tryptic soy agar. Three E. coli O157:H7 strains (ATCC 35150, 43890 and 43894) were separately inoculated into raw ground beef at low (mean 0.32 cfu g-1) and high (mean 3.12 cfu g-1) levels. Using the United States Department of Agriculture (USDA) m-EC + novobiocin enrichment broth, BCM O157:H7 (+) medium surpassed MSA-BCIG agar with overall percentage sensitivities for BCM O157:H7 (+) of 92.1 and 94.4 compared with 52.6 and 84.7 for MSA-BCIG at low and high levels, respectively. A comparison of BCM O157:H7 (+) and MSA-BCIG agars using naturally contaminated beef samples was made utilizing presumptively positive enrichment broths previously identified by rapid methods. The E. coli O157:H7 cells in these broths were concentrated with Dynabeads anti-E. coli O157 before inoculating the agars. The respective percentage sensitivity and specificity values were 90.0 and 78.5 for BCM O157:H7 (+) and 70.0 and 46.4 for MSA-BCIG. Thus, under identical pre-plating conditions, BCM O157:H7 (+) medium displayed a greater sensitivity than MSA-BCIG for detecting E. coli O157:H7 in artificially inoculated beef, and both greater sensitivity and specificity upon examining naturally contaminated beef samples.  相似文献   

10.
The thermotolerance of E. coli O157:H7 cells (strain 380-94) heated in pepperoni is reported. Information on the pattern of thermal inactivation of E. coli O157:H7 in pepperoni was applied in the development of heating processes designed to reduce E. coli O157:H7 numbers therein by 5 log(10) units.  相似文献   

11.
E. coli belonging to the O157 serological group are among the organisms isolated most frequently out of all the so called entero-hemorrhagic E. coli strains (EHEC). Since several years they have been isolated also in Poland. The purpose of the present study was determination on selected phenotypic and genotypic properties of E. coli O157 strains isolated in our country from clinical material samples and from food. The serotype of the strains was determined, together with the following properties regarded as pathogenicity markers of verotoxic E. coli strains such as absence of beta-glucuronidase activity and sorbitol fermentation ability, as well as production of verotoxins SLT I and/or SLT II and entero-hemolysin. Besides that, by the PCR method the fragments of the genes coding for verotoxins, intimin and enterohaemolysin were amplified. The products of PCR were analysed by the restriction enzyme analysis (RFLP). All verotoxic E. coli O157 strains isolated in Poland were analysed by the pulsed field gel electrophoresis of genomic DNA (PFGE). The studied group comprised E. coli O157 strains, among them 40 strains were isolated from human faeces and 5 from food. The remaining strains were the reference E. coli O157:H7 EDL 933 and G 5244 strains and strains from NIH collection. The obtained results showed that the tested strains were a very varying population. 21 of them (all isolated from food, 11 from faeces and 5 reference strains) belonged to serotype O157:H7, five were not peritrichous O157:NM and the remaining ones had other ciliary antigen than H7. All strains isolated from food, reference strains and only 3 O157:NM strains isolated from humans were verotoxic. The strains from food and two reference strains produced only SLT II, 2 of 3 strains isolated from humans and one reference strain also produced only SLT II and the other produced both verotoxins. Apart from these 13 verotoxic strains all remaining strains caused sorbitol fermentation.  相似文献   

12.
A multiplex PCR assay specifically detecting Escherichia coli O157 : H7 was developed by employing primers amplifying a DNA sequence upstream of E. coli O157 : H7 eaeA gene and genes encoding Shiga-like toxins (SLT) I and II. Analysis of 151 bacterial strains revealed that all E. coli O157 : H7 strains were identified simultaneously with the SLT types and could be distinguished from E. coli O55 : H7 and E. coli 055 : NM, and other non-O157 SLT-producing E. coli strains. Primer design, reaction composition (in particular, primer quantity and ratios), and amplification profile were most important in development of this multiplex PCR. This assay can serve not only as a confirmation test but also potentially can be applied to detect the pathogen in food.  相似文献   

13.
Aims:  To better understand the transport and enumeration of dilute densities of Escherichia coli O157:H7 in agricultural watersheds, we developed a culture-based, five tube-multiple dilution most probable number (MPN) method.
Methods and Results:  The MPN method combined a filtration technique for large volumes of surface water with standard selective media, biochemical and immunological tests, and a TaqMan confirmation step. This method determined E. coli O157:H7 concentrations as low as 0·1 MPN per litre, with a 95% confidence level of 0·01–0·7 MPN per litre. Escherichia coli O157:H7 densities ranged from not detectable to 9 MPN per litre for pond inflow, from not detectable to 0·9 MPN per litre for pond outflow and from not detectable to 8·3 MPN per litre for within pond. The MPN methodology was extended to mass flux determinations. Fluxes of E. coli O157:H7 ranged from <27 to >104 MPN per hour.
Conclusion:  This culture-based method can detect small numbers of viable/culturable E. coli O157:H7 in surface waters of watersheds containing animal agriculture and wildlife.
Significance and Impact of the Study:  This MPN method will improve our understanding of the transport and fate of E. coli O157:H7 in agricultural watersheds, and can be the basis of collections of environmental E. coli O157:H7.  相似文献   

14.
An immunoassay based on immunomagnetic separation and time-resolved fluorometry was developed for the detection of E. coli O157:H7 in apple cider. The time-resolved fluorescent immunoassay (TRFIA) uses a polyclonal antibody bound to immunomagnetic beads as the capture antibody and the same antibody labeled with europium as the detection antibody. Cell suspensions of 10(1) to 10(8) E. coli O157:H7 and K-12 organisms per ml were used to test the sensitivity and specificity of the assay. The sensitivity of the assay was 10(3) E. coli O157:H7 cells with no cross-reaction with K-12. Pure cultures of E. coli O157:H7 (10(1) to 10(5) CFU/ml) in apple cider could be detected within 6 h, including 4 h for incubation in modified EC broth with novobiocin and 2 h for the immunoassay. When apple cider was spiked with 1 to 10(3) CFU/ml of E. coli O157:H7 and 10(6) CFU/ml of K-12, our data show that the high level of K-12 in apple cider did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum were 10(2) and 10(1) CFU/ml after 4- and 6-h enrichment. The TRFIA provides a rapid and sensitive means of detecting E. coli O157:H7 in apple cider.  相似文献   

15.
Twenty-four Escherichia coli strains producing standard colicins were evaluated for inhibitory activity against 27 diarrheagenic E. coli strains of serotypes O15:H-, O26:(H11, H-), and O111:(H8, H11, H-), including O157:H7, representing diarrheagenic E. coli clones, 3, 4, 8, 9, and 10. Overlay techniques were used to assess inhibition on Luria agar and Luria agar supplemented with 0.25 micrograms of mitomycin C per ml to induce colicin production. As a group, the A colicins (Col) E1 to E8, K, and N inhibited 23 to 25 (85.2 to 92.6%) of the 27 diarrheagenic strains on mitomycin C-containing agar, whereas the most active group B colicins, Col D and Ia, inhibited 9 and 12 (33.3 and 44.4%), of the diarrheagenic strains, respectively. Col G and H and Mcc B17 inhibited 22 to 27 (81.5 to 100%) of the diarrheagenic strains on Luria agar but were suppressed on mitomycin C-containing agar medium. All O157:H7 strains evaluated were sensitive to Col E1 to E8, K, and N on mitomycin C-containing agar and to Col G and H and Mcc B17 on Luria agar. Sensitivity to colicins of the selected set of diarrheagenic strains was in the order diarrheagenic E. coli clone 9 > 4 > 3 > 10 > 8 and was not restricted to strains of a single clone or serotype. Strain 8C from clone 8 was resistant to most test colicins. There is potential for using colicins in foods and agriculture to inhibit sensitive diarrheagenic E. coli strains, including serotype O157:H7.  相似文献   

16.
AIMS: The reliability of the O157:H7 ID agar (O157 H7 ID-F) to detect verocytotoxigenic strains of Escherichia coli (VTEC) of serogroup O157 was investigated. METHODS AND RESULTS: This medium, designed to detect strains belonging to the clone of VTEC O157:H7/H-, contains carbohydrates and two chromogenic substrates to detect beta-d-galactosidase and beta-d-glucuronidase and sodium desoxycholate to increase selectivity for Gram-negative rods. A total of 347 strains of E. coli including a variety of serotypes, verocytotoxigenicity of human and animal sources were tested. The green VTEC O157 colonies were easy to detect among the other dark purple to black E. coli colonies. Of 63 O157:H7/H- strains, 59 (93.7%) gave the characteristic green colour. Three of the failed four strains of O157:H- were not verocytotoxigenic, missing only one VTEC O157. Three non-O157 strains gave the characteristic green colour on the medium and were VTEC OR:H- (2) and Ont:H- (1), possibly being degraded variants of the O157 enterohaemorrhagic E. coli clone. CONCLUSIONS: The O157:H7 ID agar (O157 H7 ID-F) was largely successful in isolating VTEC belonging to the O157:H7/H- clone. SIGNIFICANCE AND IMPACT OF THE STUDY: A medium, suitable for isolating strains of VTEC O157 was successfully evaluated and should be useful for the isolation of these pathogens.  相似文献   

17.
Detection of Escherichia coli O157:H7 organisms in food, clinical or environmental samples is necessary for diagnosis of infection and epidemiological investigations. However, this pathogen may be present in low numbers and difficult to identify among high numbers of other background bacteria. In order to increase the sensitivity of culture- and PCR detection, pre-enrichment of E. coli O157:H7 in broth culture combined with ImmunoMagnetic cell Separation (IMS) is routinely employed. These methods, although able to detect levels as low as 2 cfu/g (from 10 to 25 g samples), are qualitative detection strategies only. If the actual numbers of E. coli O157:H7 are to be quantified, growth enrichment must be excluded and the organisms isolated directly from the sample of interest. Such quantification is necessary, for example, to determinate contamination levels on beef carcasses and for determination of bacterial numbers in in vivo gene expression studies. In the present study, it was not possible to recover organisms from bovine faecal suspensions using the customary IMS system and so a range of alternative buffers and other paramagnetic beads was tested. Combination of a 6.2-microm diameter bead with a detergent-based buffer gave optimal recovery of E. coli O157:H7 organisms from faecal suspensions. This system was validated for recovery of E. coli O157:H7 by comparing it with that obtained with the standard Dynabeads IMS protocol, using both the traditional broth enrichment method and a quantitative detection approach. We conclude that a 6.2-microm diameter Aureon bead can be used for quantitative isolation of E. coli O157:H7 directly from bovine faeces and, for this purpose, is preferred to the 2.8-microm diameter Dynal bead.  相似文献   

18.
We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were 相似文献   

19.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h(-1) and by 3 orders of magnitude at a lower dilution rate (0.327 h(-1)). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h(-1) and persisted until the end of the experiment (approximately 200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   

20.
A total of 896 samples of retail fresh meats and poultry was assayed for Escherichia coli serogroup O157:H7 by a hydrophobic grid membrane filter-immunoblot procedure developed specifically to isolate the organism from foods. The procedure involves several steps, including selective enrichment, filtration of enrichment culture through hydrophobic grid membrane filters, incubation of each filter on nitrocellulose paper on selective agar, preparation of an immunoblot (by using antiserum to E. coli O157:H7 culture filtrate) of each nitrocellulose paper, selection from the filters of colonies which corresponded to immunopositive sites on blots, screening of isolates by a Biken test for precipitin lines from metabolites and antiserum to E. coli O157:H7 culture filtrate, and confirmation of isolates as Vero cell cytotoxic E. coli O157:H7 by biochemical, serological, and Vero cell cytotoxicity tests. E. coli O157:H7 was isolated from 6 (3.7%) of 164 beef, 4 (1.5%) of 264 pork, 4 (1.5%) of 263 poultry, and 4 (2.0%) of 205 lamb samples. One of 14 pork samples and 5 of 17 beef samples contaminated with the organism were from Calgary, Alberta, Canada, grocery stores, whereas all other contaminated samples were from Madison, Wis., retail outlets. This is the first report of the isolation of E. coli O157:H7 from food other than ground beef, and results indicate that the organism is not a rare contaminant of fresh meats and poultry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号