首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Editing of apolipoprotein (apo) B mRNA in liver limits the plasma LDL levels in horses, dogs, rats or mice. Species such as man or rabbit do not edit the hepatic apo B mRNA and are therefore susceptible to atherosclerosis and coronary artery disease due to elevated plasma LDL levels. The catalytic subunit APOBEC-1 is the only missing component of the apo B mRNA editing enzyme complex in the human or rabbit liver. Here we describe the generation of transgenic rabbits in which APOBEC-1 expression is mediated by the proximal promoter of the rat APOBEC-1 gene. These transgenic rabbits are healthy and fertile, and rat APOBEC-1 mRNA is expressed in liver, intestine, kidney, lung, brain and muscle. The transgenic APOBEC-1 expression is low and not sufficient to induce editing in rabbit liver. In rat, the proximal APOBEC-1 promoter demonstrates a progressive loss of CpG dinucleotide methylation towards the core promoter region that is entirely unmethylated. In the transgenic rabbits, this distinct pattern of CpG methylation is lost, and throughout the entire rat APOBEC-1 promoter, >90% of the CpGs are methylated. Thus, the weak proximal rat APOBEC-1 promoter appears to be down-regulated in the rabbit and may be species-specific.  相似文献   

2.
3.
4.
5.
The C->U editing of RNA is widely found in plant and animal species. In mammals it is a discrete process confined to the editing of apolipoprotein B (apoB) mRNA in eutherians and the editing of the mitochondrial tRNA for glycine in marsupials. Here we have identified and characterised apoB mRNA editing in the American opossum Monodelphus domestica. The apoB mRNA editing site is highly conserved in the opossum and undergoes complete editing in the small intestine, but not in the liver or other tissues. Opossum APOBEC-1 cDNA was cloned, sequenced and expressed. The encoded protein is similar to APOBEC-1 of eutherians. Motifs previously identified as involved in zinc binding, RNA binding and catalysis, nuclear localisation and a C-terminal leucine-rich domain are all conserved. Opossum APOBEC-1 contains a seven amino acid C-terminal extension also found in humans and rabbits, but not present in rodents. The opossum APOBEC-1 gene has the same intron/exon organisation in the coding sequence as the eutherian gene. Northern blot and RT-PCR analyses and an editing assay indicate that no APOBEC-1 was expressed in the liver. Thus the far upstream promoter responsible for hepatic expression in rodents does not operate in the opossum. An APOBEC-1-like enzyme such as might be involved in C->U RNA editing of tRNA in marsupial mitochondria was not demonstrated. The activity of opossum APOBEC-1 in the presence of both chicken and rodent auxiliary editing proteins was comparable to that of other mammals. These studies extend the origins of APOBEC-1 back 170 000 000 years to marsupials and help bridge the gap in the origins of this RNA editing process between birds and eutherian mammals.  相似文献   

6.
7.
APOBEC-1, which mediates the editing of apolipoprotein (apo) B mRNA, is the only known member of the C (cytidine)-->U (uridine) editing enzyme subfamily of the cytidine deaminase supergene family. Here we report the cloning of APOBEC-2, another member of the subfamily. Human and mouse APOBEC-2 both contain 224 amino acid residues, and their genes are mapped to syntenic regions of human chromosome 6 (6p21) and mouse chromosome 17. By phylogenetic analysis, APOBEC-2 is shown to be evolutionarily related to APOBEC-1, and analysis of substitution rates indicates that APOBEC-2 is a much better conserved gene than APOBEC-1. APOBEC-2 mRNA and protein are expressed exclusively in heart and skeletal muscle. APOBEC-2 does not display detectable apoB mRNA editing activity. Like other editing enzymes of the cytidine deaminase superfamily, APOBEC-2 has low, but definite, intrinsic cytidine deaminase activity. The identification of APOBEC-2 indicates that APOBEC-1 is not the only member of the C-->U editing enzyme subfamily, which, like the A (adenosine)-->I (inosine) subfamily of editing enzymes, must encompass at least two and possibly more different deaminase enzymes. It suggests that the C-->U editing affecting apoB mRNA and other RNAs is not an isolated event mediated by a single enzyme but involves multiple related proteins that have evolved from a primordial gene closely related to the housekeeping enzyme cytidine deaminase.  相似文献   

8.
9.
Editing of apolipoprotein B (apoB) mRNA requires the catalytic component APOBEC-1 together with "auxiliary" proteins that have not been conclusively characterized so far. Here we report the purification of these additional components of the apoB mRNA editing enzyme-complex from rat liver and the cDNA cloning of the novel APOBEC-1-stimulating protein (ASP). Two proteins copurified into the final active fraction and were characterized by peptide sequencing and mass spectrometry: KSRP, a 75-kDa protein originally described as a splicing regulating factor, and ASP, a hitherto unknown 65-kDa protein. Separation of these two proteins resulted in a reduction of APOBEC-1-stimulating activity. ASP represents a novel type of RNA-binding protein and contains three single-stranded RNA-binding domains in the amino-terminal half and a putative double-stranded RNA-binding domain at the carboxyl terminus. Purified recombinant glutathione S-transferase (GST)-ASP, but not recombinant GST-KSRP, stimulated recombinant GST-APOBEC-1 to edit apoB RNA in vitro. These data demonstrate that ASP is the second essential component of the apoB mRNA editing enzyme-complex. In rat liver, ASP is apparently associated with KSRP, which may confer stability to the editing enzyme-complex with its substrate apoB RNA serving as an additional auxiliary component.  相似文献   

10.
11.
We have generated transgenic mice carrying wild-type and mutant forms of the apolipoprotein (apo)A-I/apoCIII gene cluster. Mutations were introduced either in one or in three SP1 binding sites of the apoCIII enhancer. In mice carrying the wild-type transgene, major sites of apoA-I mRNA synthesis were liver and intestine and minor sites were kidney and, to a lesser extent, other tissues. The major site of chloramphenicol acetyl transferase (CAT) activity (used as a reporter for the apoCIII gene) was liver and minor sites intestine and kidney. A mutation in one SP1 binding site reduced the expression of the apoA-I gene to ~23 and 19% in the liver and intestine, respectively, as compared to the control wild-type. The hepatic expression of the CAT gene was not affected whereas the intestinal expression was nearly abolished. Mutations in three SP1 binding sites reduced the hepatic and intestinal expression of the apoA-I and CAT genes to 14 and 4%, respectively, as compared to the wild-type control, and abolished CAT expression in all tissues. The findings suggest that the SP1 sites of the apoCIII enhancer are required for the expression of the apoCIII gene and also contribute significantly to the hepatic and intestinal expression of the apoA-I gene in vivo.  相似文献   

12.
Apolipoprotein B (apoB) mRNA editing is a nuclear event that minimally requires the RNA substrate, APOBEC-1 and APOBEC-1 Complementation Factor (ACF). The co-localization of these macro-molecules within the nucleus and the modulation of hepatic apoB mRNA editing activity have been described following a variety of metabolic perturbations, but the mechanism that regulates editosome assembly is unknown. APOBEC-1 was effectively co-immunoprecipitated with ACF from nuclear, but not cytoplasmic extracts. Moreover, alkaline phosphatase treatment of nuclear extracts reduced the amount of APOBEC-1 co-immunoprecipitated with ACF and inhibited in vitro editing activity. Ethanol stimulated apoB mRNA editing was associated with a 2- to 3-fold increase in ACF phosphorylation relative to that in control primary hepatocytes. Significantly, phosphorylated ACF was restricted to nuclear extracts where it co-sedimented with 27S editing competent complexes. Two-dimensional phosphoamino acid analysis of ACF immunopurified from hepatocyte nuclear extracts demonstrated phosphorylation of serine residues that was increased by ethanol treatment. Inhibition of protein phosphatase I, but not PPIIA or IIB, stimulated apoB mRNA editing activity coincident with enhanced ACF phosphorylation in vivo. These data demonstrate that ACF is a metabolically regulated phosphoprotein and suggest that this post-translational modification increases hepatic apoB mRNA editing activity by enhancing ACF nuclear localization/retention, facilitating the interaction of ACF with APOBEC-1 and thereby increasing the probability of editosome assembly and activity.  相似文献   

13.
ApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes. We demonstrate that activation of protein kinase C (PKC) stimulated editing and enhanced ACF phosphorylation in rat primary hepatocytes. Conversely, activation of protein kinase A (PKA) had no effect on editing. Recombinant PKC efficiently phosphorylated purified ACF64 protein in vitro, whereas PKA did not. Mutagenesis of predicted PKC phosphorylation sites S154 and S368 to alanine inhibited ethanol-stimulated induction of editing suggesting that these sites function in the metabolic regulation of editing. Consistent with this interpretation, substitution of S154 and S368 with aspartic acid stimulated editing to levels comparable to ethanol treatment in control McArdle RH7777 cells. These data suggest that phosphorylation of ACF by PKC may be a key regulatory mechanism of apoB mRNA editing in rat hepatocytes.  相似文献   

14.
Molecular mechanisms of apolipoprotein B mRNA editing   总被引:4,自引:0,他引:4  
  相似文献   

15.
16.
Obesity is associated with increased serum endocannabinoid (EC) levels and decreased high-density lipoprotein cholesterol (HDLc). Apolipoprotein A-I (apo A-I), the primary protein component of HDL is expressed primarily in the liver and small intestine. To determine whether ECs regulate apo A-I gene expression directly, the effect of the obesity-associated ECs anandamide and 2-arachidonylglycerol on apo A-I gene expression was examined in the hepatocyte cell line HepG2 and the intestinal cell line Caco-2. Apo A-I protein secretion was suppressed nearly 50% by anandamide and 2-arachidonoylglycerol in a dose-dependent manner in both cell lines. Anandamide treatment suppressed both apo A-I mRNA and apo A-I gene promoter activity in both cell lines. Studies using apo A-I promoter deletion constructs indicated that repression of apo A-I promoter activity by anandamide requires a previously identified nuclear receptor binding site designated as site A. Furthermore, anandamide-treatment inhibited protein-DNA complex formation with the site A probe. Exogenous over expression of cannabinoid receptor 1 (CBR1) in HepG2 cells suppressed apo A-I promoter activity, while in Caco-2 cells, exogenous expression of both CBR1 and CBR2 could repress apo A-I promoter activity. The suppressive effect of anandamide on apo A-I promoter activity in Hep G2 cells could be inhibited by CBR1 antagonist AM251 but not by AM630, a selective and potent CBR2 inhibitor. These results indicate that ECs directly suppress apo A-I gene expression in both hepatocytes and intestinal cells, contributing to the decrease in serum HDLc in obese individuals.  相似文献   

17.
18.
APOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals.  相似文献   

19.
20.
Apolipoprotein (apo)B mRNA editing is accomplished by a large multiprotein complex. How these proteins interact to achieve the precise single-nucleotide change induced by this complex remains unclear. We investigated the relationship between altered apoB mRNA editing and changes in editing enzyme components to evaluate their roles in editing regulation. In the mouse fetal small intestine, we found that the dramatic developmental upregulation of apoB mRNA editing from approximately 3% to 88% begins with decreased levels of inhibitory CUG binding protein 2 (CUGBP2) expression followed by increased levels of apoB mRNA editing enzyme (apobec)-1 and apobec-1 complementation factor (ACF) (4- and 8-fold) and then by decreased levels of the inhibitory components glycine-arginine-tyrosine-rich RNA binding protein (GRY-RBP) and heterogeneous nuclear ribonucleoprotein (hnRNP)-C1 (75% and 56%). In contrast, the expression of KH-type splicing regulatory protein (KSRP), apobec-1 binding protein (ABBP)1, ABBP2, and Bcl-2-associated athanogene 4 (BAG4) were unaltered. In the human intestinal cell line Caco-2, the increase of apoB mRNA editing from approximately 1.7% to approximately 23% was associated with 6- and 3.2-fold increases of apobec-1 and CUGBP2, respectively. In the mouse large intestine, the editing was 48% and had a 2.7-fold relatively greater CUGBP2 level. Caco-2 and the large intestine thus have increased instead of decreased CUGBP2 and a lower level of editing, suggesting that inhibitory CUGBP2 may play a critical role in the magnitude of editing regulation. Short interfering RNA-mediated gene-specific knockdown of CUGBP2, GRY-RBP, and hnRNP-C1 resulted in increased editing in Caco-2 cells, consistent with their known inhibitory function. These data suggest that a coordinated expression of editing components determines the magnitude and specificity of apoB mRNA editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号