首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four Tn5-induced mutants of Rhizobium meliloti WSM419 were unable to grow or maintain intracellular pH at an external pH of 5.6. Restriction analysis of DNA fragments carrying Tn5 and flanking sequences cloned from these mutants indicated that all four cloned mutations are unique and that the two strains (TG1-6 and TG1-11) carry Tn5 insertions which are within 4.4 kilobases of each other on a single EcoRI fragment. Southern analysis of total mutant DNA indicated a single copy of Tn5 in each mutant. A limited cosmid gene bank of wild-type WSM419 DNA was probed for homology to mutant DNA cloned from the acid-sensitive mutants. Dot hybridization experiments identified one cosmid element within this bank carrying wild-type DNA sequences corresponding to DNA implicated in acid tolerance. This cosmid was able to complement defects in growth and intracellular pH maintenance in TG1-11 but not TG1-6.  相似文献   

2.
Acid-tolerant Rhizobium leguminosarum biovar trifolii ANU1173 was able to grow on laboratory media at a pH as low as 4.5. Transposon Tn5 mutagenesis was used to isolate mutants of strain ANU1173, which were unable to grow on media at a pH of less than 4.8. The acid-tolerant strain ANU1173 maintained a near-neutral intracellular pH when the external pH was as low as 4.5. In contrast, the acid-sensitive mutants AS25 and AS28 derived from ANU1173 had an acidic intracellular pH when the external pH was less than 5.5. The acid-sensitive R. leguminosarum biovar trifolii ANU794, which was comparatively more sensitive to low pH than mutants AS25 and AS28, showed a more acidic internal pH than the two mutants when the three strains were exposed to medium buffered at a pH of less than 5.5. The two acid-sensitive mutants had an increased membrane permeability to protons but did not change their proton extrusion activities. However, the acid-sensitive strain ANU794 exhibited both a higher membrane permeability to protons and a lower proton extrusion activity compared with the acid-tolerant strain ANU1173. DNA hybridization analysis showed that mutants AS25 and AS28 carried a single copy of Tn5 located in 13.7-kb (AS25) and 10.0-kb (AS28) EcoRI DNA fragments. The wild-type DNA sequences spanning the mutation sites of mutants AS25 and AS28 were cloned from genomic DNA of strain ANU1173. Transfer of these wild-type DNA sequences into corresponding Tn5-induced acid-sensitive mutants, respectively, restored the mutants to their acid tolerance phenotypes. Mapping studies showed that the AS25 locus was mapped to a 5.6-kb EcoRI-BamHI megaplasmid DNA fragment, whilst the AS28 locus was located in an 8.7-kb BglII chromosomal DNA fragment.  相似文献   

3.
Survival of Rhizobium in Acid Soils   总被引:4,自引:4,他引:0       下载免费PDF全文
A Rhizobium strain nodulating cowpeas did not decline in abundance after it was added to sterile soils at pH 6.9 and 4.4, and the numbers fell slowly in nonsterile soils at pH 5.5 and 4.1. A strain of R. phaseoli grew when added to sterile soils at pH 6.7 and 6.9; it maintained large, stable populations in soils of pH 4.4, 5.5, and 6.0, but the numbers fell markedly and then reached a stable population size in sterile soils at pH 4.3 and 4.4. The abundance of R. phaseoli added to nonsterile soils with pH values of 4.3 to 6.7 decreased similarly with time regardless of soil acidity, and the final numbers were less than in the comparable sterile soils. The minimum pH values for the growth of strains of R. meliloti in liquid media ranged from 5.3 to 5.9. Two R. meliloti strains, which differed in acid tolerance for growth in culture, did not differ in numbers or decline when added to sterile soils at pH 4.8, 5.2, and 6.3. The population size of these two strains was reduced after they were introduced into nonsterile soils at pH 4.8, 5.4, and 6.4, and the number of survivors was related to the soil pH. The R. meliloti strain that was more acid sensitive in culture declined more readily in sterile soil at pH 4.6 than did the less sensitive strain, and only the former strain was eliminated from nonsterile soil at pH 4.8; however, the less sensitive strain also survived better in limed soil. The cell density of the two R. meliloti strains was increased in pH 6.4 soil in the presence of growing alfalfa. The decline and elimination of the tolerant, but not the sensitive, strain was delayed in soil at pH 4.6 by roots of growing alfalfa.  相似文献   

4.
Alfalfa (Medicago sativa L.) growth and nodulation in acid soil is reduced because the plant and its bacterial symbiontRhizobium meliloti cannot tolerate acid, aluminum-rich soil. A study was conducted to determine if a relatively acid-tolerant alfalfa germplasm combined with a relatively acid-tolerantR. meliloti strain could overcome these limitations. In a light room study, an acid-tolerant alfalfa germplasm inoculated with a more acid-tolerantR. meliloti strain produced greater top growth, nodule number and weight, and acetylene reduction values in an unlimed soil (pH 4.6) than the same germplasm inoculated with a relatively acid-sensitiveR. meliloti strain or an acid-sensitive germplasm inoculated with either a relatively acid-tolerant or acid-sensitiveR. meliloti strain.  相似文献   

5.
The acid-tolerant Rhizobium leguminosarum biovar trifolii strain ANU1173 exhibited several new phenotypes when cured of its symbiotic (Sym) plasmid and the second largest megaplasmid. Strain P22, which has lost these two plasmids, had reduced exopolysaccharide production and cell mobility on TY medium. The parent strain ANU1173 was able to grow easily in laboratory media at pH 4.5, whereas the derivative strain P22 was unable to grow in media at a pH of <4.7. The intracellular pH of strain ANU1173 was 6.8 when the external pH was 4.5. In contrast, strain P22 had an acidic intracellular pH of <6.4 when the external pH was <5.5. Strain P22 had a dramatically increased membrane permeability to protons and decreased proton extrusion activity. Analysis with sodium dodecyl sulfate-polyacrylamide gels showed that strain P22 lacked a slow-migrating lipopolysaccharide (LPS) banding group which was present in the parent strain. Mobilization of the second largest megaplasmid of strain ANU1173 back into strain P22 restored the altered LPS structure and physiological characteristics of strain P22. Mobilization of the Sym plasmid of strain ANU1173 into strain P22 showed that the second largest megaplasmid of strain ANU1173 was required for the establishment of nitrogen-fixing nodules on Trifolium repens and Trifolium subterraneum. Furthermore, an examination of a large number of specific exopolysaccharide- or LPS-deficient Rhizobium mutants did not show a positive correlation between exopolysaccharide or LPS synthesis and acid tolerance.  相似文献   

6.
A study was conducted with the aim of evaluating the genetic diversity of alfalfa rhizobia isolated from volcanic soils in southern Chile and their ability to establish an effective symbiosis with alfalfa. Rhizobial strains isolated from nodules were identified and selected based on PCR analyses and acid tolerance. Symbiotic effectiveness (nodulation and shoot dry weight) of acid-tolerant rhizobia was evaluated in glasshouse experiments under acidic conditions. The results revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules with a high genetic diversity at strain level grouped in three major clusters. There was a close relationship (r 2 = 0.895, P ≤ 0.001, n = 40) between soil pH and the size of rhizobial populations. Representative isolates from major cluster groups showed wide variation in acid tolerance expressed on buffered agar plates (pH 4.5–7.0) and symbiotic effectiveness with alfalfa. One isolate (NS11) appears to be suitable as an inoculant for alfalfa according to its acid tolerance and symbiotic effectiveness at low pH (5.5). The isolation and selection of naturalized S. meliloti strains with high symbiotic effectiveness under acidic conditions is an alternative approach to improving the productivity of alfalfa and for reducing the application of synthetic fertilizers in Chile.  相似文献   

7.
A study was conducted to determine whether the survival of Rhizobium phaseoli in acid soils could be predicted on the basis of the tolerance of the organism to acidity in culture. Of 16 strains tested, all grew in culture at pH 4.6, but only those that grew at pH 3.8 survived in soils having pH values of 4.1 to 4.6. Strains that tolerated the lowest pH values in culture were tolerant of the highest aluminum concentrations. In one acid soil, an acid-tolerant strain was unable to survive in numbers greater than 100/g, but the poor survival was not related to the level of extractable aluminum or manganese in the soil. Reproduction of an acid-tolerant strain of R. phaseoli was enhanced in the rhizosphere of Phaseolus vulgaris in both acid and limed soils, but stimulation of an acid-sensitive strain by the plant occurred only in the limed soil. These results indicate that cultural tests can be used to predict the ability of R. phaseoli to survive in acid soil.  相似文献   

8.
Twenty four rhizobial strains were isolated from root nodules of Melilotus, Medicago and Trigonella plants growing wild in soils throughout Egypt. The nearly complete 16S rRNA gene sequence from each strain showed that 12 strains (50 %) were closely related to the Ensifer meliloti LMG6133T type strain with identity values higher than 99.0 %, that 9 (37.5 %) strains were more than 99 % identical to the E. medicae WSM419T type strain, and that 3 (12.5 %) strains showed 100 % identity with the type strain of N. huautlense S02T. Accordingly, the diversity of rhizobial strains nodulating wild Melilotus, Medicago and Trigonella species in Egypt is marked by predominance of two genetic types, E. meliloti and E. medicae, although the frequency of isolation was slightly higher in E. meliloti. Sequencing of the symbiotic nodC gene from selected Medicago and Melilotus strains revealed that they were all similar to those of the E. meliloti LMG6133T and E. medicae WSM419T type strains, respectively. Similarly, nodC sequences of strains identified as members of the genus Neorhizobium were more than 99 % identical to that of N. galegae symbiovar officinalis HAMBI 114.  相似文献   

9.
In the selection of acid-tolerantRhizobium meliloti, procedures for the collection and isolation of rhizobia, and the assessment of acid tolerance, have not been critically evaluated. Such procedures form the basis of this study. Root nodules were collected fromMedicago spp. found growing on acid soil in Sardinia. Their encumbent bacteria were isolated directly onto media adjusted over a range of pH values, and then assessed for acid tolerance in both the laboratory and field. Strains ofRhizobium meliloti isolated onto low pH media were, in general, more acid-tolerant than sister isolates from high pH media, when tested in both the laboratory and field. Dilution (10 or 100 fold) of the inocula used in the laboratory assessment did not greatly influence the rating derived, although there was some effect of bacterial colony type on growth rating. The link between polysaccharide production and acid tolerance was not strong. There was a poor correlation between the growth ratings derived from the laboratory screening and acid tolerance as expressed in the field.  相似文献   

10.
The components of the proton motive force (Δp), namely, membrane potential (Δψ) and transmembrane pH gradient (ΔpH), were determined in the nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis. In these bacteria both Δψ and ΔpH were dependent on external pH. Thus at pH 8.0, Nitrosomonas europaea and Nitrobacter agilis had Δψ values of 173 mV and 125 mV (inside negative), respectively, as determined by the distribution of the lipophilic cation [3H]tetraphenyl phosphonium. Intracellular pH was determined by the distribution of two weak acids, 14C-benzoic and 14C-acetyl salicylic, and the weak base [14C]methylamine. Nitrosomonas europaea accumulated 14C-benzoic acid and 14C-acetyl salicylic acid when the external pH was below 7.0 and [14C]methylamine at alkaline pH. Similarly, Nitrobacter agilis accumulated the two weak acids below an external pH of about 7.5 and [14C]methylamine above this pH. As these bacteria grow best between pH 7.5 and 8.0, they do not appear to have a ΔpH (inside alkaline). Thus, above pH 7.0 for Nitrosomonas europaea and pH 7.5 for Nitrobacter agilis, Δψ only contributed to Δp. In Nitrosomonas europaea the total Δp remained almost constant (145 to 135 mV) when the external pH was varied from 6 to 8.5. In Nitrobacter agilis, Δp decreased from 178 mV (inside negative) at pH 6.0 to 95 mV at pH 8.5. Intracellular pH in Nitrosomonas europaea varied from 6.3 at an external pH of 6.0 to 7.8 at external pH 8.5. In Nitrobacter agilis, however, intracellular pH was relatively constant (7.3 to 7.8) over an external pH range of 6 to 8.5. In Nitrosomonas europaea, Δp and its components (Δψ and ΔpH) remained constant in cells at various stages of growth, so that the metabolic state of cells did not affect Δp. Such an experiment was not possible with Nitrobacter agilis because of low cell yields. The effects of protonophores and ATPase inhibitors on ΔpH and Δψ in the two nitrifying bacteria are considered.  相似文献   

11.
12.
Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022 bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319 bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395 bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.  相似文献   

13.
When cells of the anaerobic thermophile Clostridium thermoaceticum grow in batch culture and homoferment glucose to acetic acid, the pH of the medium decreases until growth and then acid production cease, at about pH 5. We postulated that the end product of fermentation limits growth by acting as an uncoupling agent. Thus, when the pH of the medium is low, the cytoplasm of the cells becomes acidified below a tolerable pH. We have therefore measured the internal pH of growing cells and compared these values with those of nongrowing cells incubated in the absence of acetic acid. Growing cells maintained an interior about 0.6 pH units more alkaline than the exterior throughout most of batch growth (i.e., ΔpH = 0.6). We also measured the transmembrane electrical potential (ΔΨ), which decreased from 140 mV at pH 7 at the beginning of growth to 80 mV when the medium had reached pH 5. The proton motive force, therefore, was 155 mV at pH 7, decreasing to 120 mV at pH 5. When further fermentation acidified the medium below pH 5, both the ΔpH and the ΔΨ collapsed, indicating that these cells require an internal pH of at least 5.5 to 5.7. Cells harvested from stationary phase and suspended in citrate-phosphate buffer maintained a ΔpH of 1.5 at external pH 5.0. This ΔpH was dissipated by acetic acid (at the concentrations found in the growth medium) and other weak organic acids, as well as by ionophores and inhibitors of glycolysis and of the H+-ATPase. Nongrowing cells had a ΔΨ which ranged from about 116 mV at external pH 7 to about 55 mV at external pH 5 and which also was sensitive to ionophores. Since acetic acid, in its un-ionized form, diffuses passively across the cytoplasmic membrane, it effectively renders the membrane permeable to protons. It therefore seems unlikely that mutations at one or a few loci would result in C. thermoaceticum cells significantly more acetic acid tolerant than their parental type.  相似文献   

14.
Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.  相似文献   

15.

Aims

Low numbers of rhizobia in soil or inoculants delay nodulation and decrease symbiotic legume productivity. This study investigated the effect of co-inoculation with a helper bacterium, Pseudomonas fluorescens WSM3457 on the Medicago truncatula - Ensifer (Sinorhizobium) medicae WSM419 symbiosis challenged by a low inoculum dose.

Methods

In a glasshouse experiment the effect of co-inoculation with WSM3457 on the kinetics of nodule initiation and development was assessed 5, 7, 10, 14, 17, 21, and 42 days after inoculation of M. truncatula cv. Caliph with 103 cells/plant of E. medicae WSM419.

Results

Co-inoculated plants had enhanced rate of nodule initiation and development, greater numbers of larger crown nodules, and by day 42 accumulated more N than plants inoculated with E. medicae WSM419 alone. Nodule development was altered by co-inoculation. Approximately 25% of nodule initials on co-inoculated plants formed in closely associated pairs, young nodules were larger with multiple meristems and developed into cluster-like multi-lobed nodules compared to those on WSM419 inoculated plants. Molecular typing showed WSM3457 occupied a significant proportion of root nodules on co-inoculated plants.

Conclusion

Co-inoculation with P. fluorescens WSM3457 enhanced symbiotic effectiveness of M. truncatula when inoculated with a low inoculum dose of E. medicae WSM419.  相似文献   

16.
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   

17.
A 2.8 kb BamHI DNA fragment adjacent to a BamHI fragment containing actR-actS (a sensor/regulator pair required for low pH tolerance in Rhizobium meliloti WSM419) was cloned and sequenced. A computer predicted protein of 821 amino acids, designated HelO, showed extensive similarity with `DEAH' motif helicases. Expression of helO was higher at pH 7.0 than pH 5.8 and it did not require the product of the actR gene. Inactivation of helO by insertion of a Ω interposon at codon 40 did not affect nodulation, growth or tolerance to low pH, high temperature, osmolarity or elevated levels of copper or zinc.  相似文献   

18.
An investigation was made of the survival of six strains of Rhizobium meliloti filtered on membrane filters and held in atmospheres of controlled relative humidities (RH) of from 0 to 100% at 30°C in the presence of air. The rate of water loss in the desiccator was determined by the humidity-controlling solution used. Drying was accelerated by a mild evacuation of the desiccator during the drying step. Survival rates of R. meliloti strains were much higher after slow drying to 0% RH than immediately after rapid drying. Fast drying (drying period less than 3.4 h) was shown to adversely affect the tolerance to storage at all RH values tested (no survival after 2 to 5 days of storage). When survival during storage was measurable (after slow drying), the optimum RH values for storage were 43% for strains A145 and Wu498, 22 to 43% for strains RCR2011, Wu499, and Ar16, and 83% for strain RCR2004. The most favorable drying periods were 8, 9.2, 14.2, and 50.1 h for the subsequent storage of strain RCR2011 at RH values of 0, 22, 43, and 83%, respectively. The damaging effects of rapid drying on the tolerance of strain RCR2011 to storage at different RH values could be prevented either by rehydration and subsequent slow redrying or incomplete rapid drying followed by slow drying. It is suggested that R. meliloti strains are susceptible to desiccation stresses. However, the quantitative differences among strains appear to be large enough to permit selection with regard to tolerance to desiccation and storage in dried states.  相似文献   

19.
The effect of external pH on two laboratory-cultured acid-intolerant species (Chlorella pyrenoidosa Chick and Scenedesmus quadricauda Turp. Bréb.) and one acid-tolerant species from a natural population (Euglena mutabilis Schmitz) was examined by measuring internal pH. These measurements were made with the weak acid 14C-dimethyloxazolidine-2,4-dione after cells had been incubated for 2 and 6 hours at external pH levels from 3.0 to 8.0. Photosynthetic and respiration rates of the three species were also measured over the range of external pH levels.  相似文献   

20.
Identification of salt- and drought-tolerant Rhizobium meliloti L. strains   总被引:1,自引:0,他引:1  
The first set of experiments identified sodium chloride (NaCl) tolerance of 92 accessions of Rhizobium meliloti L. from various rhizobia collections and arid and saline areas of the Intermountain West. Accessions were incubated in salinized (0, 176, 352, 528, 616, 704 or 792 m M) yeast extract mannitol (YEM) medium. Growth was measured by turbidity at 420 nm after 3 d in culture. Rhizobial strains were classified by their growth response at an optical density (OD) of 704 m M; Groups One and Two did not exceed 0.10 and 0.33, respectively. Forty three different rhizobial strains were identified as salt-sensitive and 49 as salt-tolerant at 704 m M NaCl. None grew in a saline solution of 792 m M NaCl.The second set of experiments investigated the drought tolerance of R. meliloti accessions that exhibited differential salt tolerance. Fifteen salt-sensitive and 15 salt-tolerant strains of R. meliloti from the first experiment were exposed to simulated drought stress by adding polyethylene glycol 6,000 (PEG-6,000) to the YEM medium at concentrations of 0, –0.4, –0.8 or –1.0 MPa. Rhizobium strains were incubated for 10 days at 25°C and growth turbidity was measured at 420nm. Growth turbidity of the 30 accessions ranged from 100% at –0.4 MPa to 0% at –1.0 MPa. With one exception, strains that were more drought-tolerant (at –1.0 MPa) were also more salt-tolerant (616 m M). However, some of the more salt-tolerant strains at 616 m M were not the more drought-tolerant stains at –1.0 MPa. These salt-and drought-tolerant Rhizobium accessions are excellent models to study the mechanism(s) of such resistance, and to elucidate the role of genetics of NaCl and drought tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号