首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two proteic inhibitors (I and II) of serine proteases have been purified from the parasitic worm Parascaris equorum by affinity chromatography on immobilized trypsin followed by preparative electrophoresis. They have an apparent relative molecular mass of 9000 and 7000 as determined by gel filtration, a slightly acid isoelectric point (5.5 and 6.1) and a similar amino acid composition. Both inhibitors lack serine, methionine and tyrosine. They bind bovine trypsin extremely strongly with an association constant, Ka, larger than 10(9) M-1, and form a 1:1 complex with this protease. The Ka values for the binding to bovine chymotrypsin are approximately 3.3 X 10(8) M-1 (inhibitor I) and approximately 2 X 10(6) M-1 (inhibitor II). Inhibitor I interacts also with porcine elastase (Ka approximately 5 X 10(7) M-1), while inhibitor II is inactive towards this enzyme.  相似文献   

2.
Three Kunitz trypsin inhibitor genes were isolated from trembling aspen (Populus tremuloides) by PCR and cDNA screening. Based on sequence similarity, they were grouped into two classes. Southern blots showed complex banding patterns and a high level of restriction fragment polymorphism between different aspen genotypes, suggesting that these trypsin inhibitors are members of a large, rapidly evolving gene family. One of the trypsin inhibitor genes, PtTI2. was over-expressed in Escherichia coli and its product shown to inhibit bovine trypsin in vitro. Both classes of PtTI genes are induced by wounding and herbivory, permitting rapid adaptive responses to herbivore pressure. The response appears to be mediated by an octadecanoid-based signaling pathway, as methyl jasmonate treatments induced the trypsin inhibitors. Wound-induced accumulation of trypsin inhibitor protein was also observed by western blot analysis. The pattern of expression, the apparent rapid evolution of TI genes, and the in vitro trypsin inhibitory activity are consistent with a role in herbivore defense. This work establishes the presence of a functional protein-based inducible defense system in trembling aspen.  相似文献   

3.
J M Zhou  C Liu  C L Tsou 《Biochemistry》1989,28(3):1070-1076
The kinetics of inhibition of trypsin by its specific inhibitors, pancreatic trypsin inhibitor, ovomucoid trypsin inhibitor, and soybean trypsin inhibitor, has been studied by following the hydrolysis of benzoylarginine ethyl ester in the presence of the inhibitor, and the results have been analyzed with the method described previously [Tian & Tsou (1982) Biochemistry 21, 1028]. The results obtained are consistent with the following: (a) The enzyme binds with the pancreatic inhibitor irreversibly to form an inactive complex. (b) The binding with the ovomucoid inhibitor to form the inactive complex is reversible. (c) An intermediate is formed before the relatively stable inactive complex with the soybean inhibitor, and both steps are reversible. The respective microscopic rate constants are determined by suitable plots of the apparent rate constants under different substrate and inhibitor concentrations. The second-order rate constants for the initial binding step thus obtained are in accord with the apparent inactivation rate constants determined by measuring the activity remaining with a stopped-flow apparatus equipped with a multimixing system after the enzyme-inhibitor mixture has been incubated for different time intervals.  相似文献   

4.
Glial-derived neurite-promoting factor was found to be a slow-binding inhibitor of trypsin, urokinase, and thrombin. The kinetic mechanism of the inhibition differs among the three proteases. With trypsin and urokinase, an initial protease-factor complex formed which isomerized to a tighter complex. For thrombin, however, no initial complex was kinetically observed. The dissociation constants of the equilibrium complexes of the factor with trypsin, urokinase, and thrombin were 17, 280, and 18 pM, respectively, and the apparent second-order rate constants for the interaction of the factor with these enzymes were, respectively, 4.7 X 10(6), 1.2 X 10(5), and 2.1 X 10(6) M-1S-1. Heparin increased the rate at which the factor reacted with thrombin by over 40-fold to 8.9 X 10(7) M-1S-1 and decreased the dissociation constant of the complex by over 80-fold to 0.3 pM. The values obtained for the apparent second-order rate constants when compared with the kinetics of neurite induction by the factor indicate that the neurite-promoting activity of the factor is not due to the inhibition of urokinase but could be due to the inhibition of an enzyme with a specificity similar to that of thrombin or trypsin. Comparison of the values of the apparent second-order rate constants obtained for the factor with those obtained for protease nexin suggests that these two molecules are very similar in their inhibitory properties.  相似文献   

5.
A 77-kDa complex of thrombin and a protein secreted by activated platelets had little if any thrombin amidolytic activity, indicating that the secreted protein is an inhibitor. The molecular weight of the inhibitor before reaction with thrombin was approximately 50,000. The apparent second-order rate constant for complex formation was estimated to be 1.3 x 10(6) M-1 s-1 (mean of four measurements); it was not affected by heparin or heparinase. These properties distinguish this inhibitor from other protease inhibitors secreted by platelets. The inhibitor reacted with trypsin and possibly with urokinase but not with factor Xa.  相似文献   

6.
Human granulocyte elastase is inhibited by the urinary trypsin inhibitor   总被引:1,自引:0,他引:1  
Two forms of urinary trypsin inhibitor, A and B, were purified from the urine of pregnant women. Form A was the only inhibitor present in fresh urine and inhibitor B arose from degradation of A upon storage of urine. The molecular masses of A and B were about 44 and 20 kDa, respectively, as judged from dodecyl-sulfate polyacrylamide gel electrophoresis, but about 60 kDa and 30 kDa, respectively, as judged from gel filtration analysis. The discrepancy can perhaps be explained by the carbohydrate content amounting to about 10% of each inhibitor. After reduction with mercaptoethanol, inhibitor A and inhibitor B had identical apparent molecular masses of about 20 kDa on dodecyl-sulfate gel electrophoresis. These results and the results of amino acid analysis suggest that one molecule of inhibitor A yields two molecules of inhibitor B. On agarose gel electrophoresis inhibitor A migrated as a rather broad band in the prealbumin region and inhibitor B as 3 well defined bands in the beta-region. Specific antisera were raised against inhibitor A and B. The two inhibitors showed the immunologic reaction of identity with each other and with the plasma inter-alpha-trypsin inhibitor, when using either antiserum. The inhibitors both gave quantitative inhibition of bovine trypsin, the results indicating a 4/1 trypsin/inhibitor molar ratio for A and a 2/1 ratio for B. The two substances also effectively inhibited granulocyte elastase. No inhibition of porcine pancreatic elastase was demonstrable.  相似文献   

7.
A trypsin inhibitor was purified from carp muscle to apparent homogeneity by the successive chromatographies of DEAE-cellulose, DEAE-Sepharose CL-6B, Con A-Sepharose, Ultrogel AcA 44 and hydroxylapatite. The mol. wt of the inhibitor was estimated to be 58,000 by SDS-polyacrylamide gel electrophoresis or 50,000 by gel filtration. The inhibitor seemed to form a 1:1 stoichiometric complex with trypsin, alpha-chymotrypsin and elastase, respectively. Carp muscle trypsin inhibitor was likely to be identical with serum alpha 1-proteinase inhibitor judging from its glycoprotein nature, mol. wt and the inhibition stoichiometry.  相似文献   

8.
The stabilities of trypsin and soybean trypsin inhibitor in sodium dodecylsulfate (SDS) were examined by SDS-polyacrylamide gel electrophoresis (PAGE). Both samples contained several bands, all of which migrated to positions corresponding to the appropriate molecular weight or less, even when the samples were unheated, suggesting that both the trypsin and trypsin inhibitor are susceptible to SDS-induced denaturation. When they were mixed together prior to addition of SDS-PAGE sample buffer (1% SDS), a new smearing band appeared which corresponded to a molecular weight of around 46,000, suggesting that these proteins form a stable complex in SDS. This was confirmed by electroblotting and sequence analysis, which indicated that this band contains both the trypsin and inhibitor sequences. At a fixed concentration of the inhibitor, increasing concentrations of the trypsin resulted in an increase in the intensity of the complex band. When the mixture was heated for 10 min in 1% SDS, the complex band disappeared in a temperature-dependent manner. The melting temperature determined under the experimental conditions used was about 35|MoC. Similar results were obtained with Bowman-Birk trypsin inhibitor, except that the complex with the above inhibitor had a higher melting temperature, around 41|MoC, suggesting that the Bowman-Birk inhibitor/trypsin complex is more stable than the soybean inhibitor/trypsin complex.  相似文献   

9.
Acrosin (acrosomal proteinase; EC 3.4.21.10) is a sperm-specific serine proteinase implicated in sperm penetration of the mammalian oocyte. Previously, we had shown that human acrosin, unlike human trypsin (EC 3.4.21.4), was inhibited by beta-D-fructose and related carbohydrates. The present study was undertaken to more fully elucidate the mechanism of action of fructose as an acrosin inhibitor, and to further differentiate the kinetic properties of acrosin from those of trypsin. Fructose produced a complex pattern of inhibition. At relatively low concentrations (10-60 mM), fructose acted as a competitive inhibitor with an apparent inhibition constant of 13 mM. In contrast, at high concentrations (80-320 mM), fructose behaved as a noncompetitive inhibitor, with an apparent inhibition constant of 205 mM. A Hill plot of enzyme activity as a function of fructose concentration suggested only a single binding site for fructose (slope = -0.90). The pattern of inhibition is not consistent with an enzyme containing only a single catalytic site, based either upon steady-state or rapid equilibrium assumptions; however, good agreement between observed and simulated data were obtained based upon the assumption of two catalytic sites with equal or similar binding and catalytic constants. The data suggested that fructose interacts with a single binding site (Ki = 8 mM) which alters both catalytic sites to produce an enzyme species having a higher apparent Michaelis constant and lower kcat as compared to the uninhibited enzyme. Fructose had no effect upon the rate of acrosin inactivation by either diisopropylfluorophosphate or tosyl-lysine-chloromethylketone, suggesting that neither substrate binding nor acylation were altered by this agent. The above data indicate substantial differences between the catalytic properties of human acrosin and those of trypsin.  相似文献   

10.
Zhou JY  Liao H  Zhang NH  Tang L  Xu Y  Chen F 《Biotechnology letters》2008,30(8):1495-1499
A purification protocol, involving water extraction, ammonium sulfate precipitation, Sepharose 4B-trypsin affinity and FPLC Superdex G-75 chromatography, was employed to isolate a trypsin inhibitor from Albizzia kalkora seeds. The inhibitor, which had a molecular mass of 19,768.23 Da, consisted of two disulfide-linked polypeptide chains with approximate molecular mass of 15.5 and 4.5 kDa, respectively. It was stable from pH 2-12 for 24 h, whereas it was unstable either above 80 degrees C for 10 min or under reduced condition over 60 min. The inhibitor, which inhibited trypsin activity with an apparent K (i) of 2.5 x 10(-7) M, had one reactive site involved with a lysine residue. Disulfide linkage and lysine residue were important in maintaining its active conformation. Partial amino acid sequence of the purified protein showed a high degree of homology with various members of the Kunitz inhibitor family. Moreover, trypsin-like proteases from larval Helicoverpa armigera, Spodoptera exigua, and Pieris rapae were inhibited for 85, 57, and 68% respectively, by the inhibitor at 45 microg ml(-1).  相似文献   

11.
The irreversible thermal denaturation of the association complexes of bovine beta-trypsin with soybean trypsin inhibitor or ovomucoid was observed with a differential scanning calorimeter. Association of trypsin with either inhibitor results in increased heat stability. The largest effect is observed with beta-trypsin and soybean trypsin inhibitor. At pH 6.7, first order rate constants (s-1) for denaturation at 72 degrees, determined at a heating rate of 10 degrees per min, are: beta-trypsin, 30 times 10-3; soybean trypsin inhibitor, 9 times 10-3; trypsin-soybean trypsin inhibitor complex, 0.4 times 10-3. Under equivalent conditions, rate constants for ovomucoid and trypsin-ovomucoid complex are 4 times 10-3 and 1 times 10-3 s-1, respectively. These changes in rate correspond to heat stabilization of trypsin equivalent to an increase of 16 and 9 degrees, respectively, in its observed denaturation temperature. Rate constants determined for beta-trypsin and trypsin-soybean trypsin inhibitor complex are independent of heating rate; those for soybean trypsin inhibitor and ovomucoid are a function of heating rate. This suggests that predenaturational conformational alterations may be important steps in the denaturation of the inhibitors. Activation energies for denaturation of the complexes and their components are all similar, averaging 70 kcal per mol. The large activation energies observed suggest that denaturation of the complexes is not rate-limited by their dissociation.  相似文献   

12.
W E Brown  C A Ryan 《Biochemistry》1984,23(15):3418-3422
A trypsin inhibitor from leaves of field-grown alfalfa plants has been purified and shown to be the same trypsin inhibitor that is wound induced in leaves of young growth chamber grown plants. This inhibitor accounts for the major trypsin inhibitory activity found in both field-grown and wound-induced plants. The inhibitor exhibits a molecular weight of about 7500 and is specific for trypsin with a Ki of 1 X 10(-10) M. Analysis of the purified inhibitor by cation-exchange high-performance liquid chromatography revealed the presence of four isoinhibitor species that have identical immunological and inhibitory properties. The amino acid analysis of the four species indicates small but significant differences. Immunological double diffusion comparisons of the alfalfa inhibitor with the Bowman-Birk and Kunitz soybean inhibitors did not reveal any cross-reactivity although the amino acid content of the alfalfa inhibitor resembles those of Bowman-Birk family members.  相似文献   

13.
The storage tissues of many plants contain protease inhibitors that are believed to play an important role in defending the plant from invasion by pests and pathogens. These proteinaceous inhibitor molecules belong to a number of structurally distinct families. We describe here the isolation, purification, initial inhibitory properties, and three-dimensional structure of a novel trypsin inhibitor from seeds of Veronica hederifolia (VhTI). The VhTI peptide inhibits trypsin with a submicromolar apparent K(i) and is expected to be specific for trypsin-like serine proteases. VhTI differs dramatically in structure from all previously described families of trypsin inhibitors, consisting of a helix-turn-helix motif, with the two alpha helices tightly associated by two disulfide bonds. Unusually, the crystallized complex is in the form of a stabilized acyl-enzyme intermediate with the scissile bond of the VhTI inhibitor cleaved and the resulting N-terminal portion of the inhibitor remaining attached to the trypsin catalytic serine 195 by an ester bond. A synthetic, truncated version of the VhTI peptide has also been produced and co-crystallized with trypsin but, surprisingly, is seen to be uncleaved and consequently forms a noncovalent complex with trypsin. The VhTI peptide shows that effective enzyme inhibitors can be constructed from simple helical motifs and provides a new scaffold on which to base the design of novel serine protease inhibitors.  相似文献   

14.
A trypsin inhibitor was isolated from Cassia obtusifolia by ammonium sulfate precipitation, Sepharose 4B-trypsin affinity and Sephadex G-75 chromatography. The inhibitor consisted of a single polypeptide chain with a molecular mass of 19, 812.55 Da. It was stable from pH 2 to 12 for 24 h, whereas it was unstable either above 70°C for 10 min or under reduced conditions. The inhibitor, which inhibited trypsin activity with an apparent Ki of 0.3 μM, had one reactive site involving a lysine residue. The native inhibitor was resistant to pepsin digestion, whereas the heated inhibitor produced 40% degree of susceptibility. The disulfide linkage and lysine residue were important in maintaining its conformation. Partial amino acid sequence of the purified protein showed a high degree of homology with various members of the Kunitz inhibitor family. Moreover, the inhibitor showed significant inhibitory activity against trypsin-like proteases present in the larval midgut on Pieris rapae and could suppress the growth of larvae.  相似文献   

15.
A protein capable of inhibiting trypsin and other pancreatic proteases has been purified to homogeneity from Escherichia coli by conventional procedures and affinity chromatography. It is stable for at least 30 min at 100 degrees C and pH 1.0, but it is inactivated by digestion with pepsin. The inhibitor has an apparent molecular weight of 38,000 as determined by gel filtration and must be a homodimer since it contains a single 18,000-dalton subunit upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The inhibitor has an isoelectric point of 6.1. One dimeric molecule of the inhibitor can bind two trypsin molecules to form a mixed tetrameric complex, in which trypsin molecules are completely inhibited. The inhibitor is not digested by the trypsin. When N-benzoyl-DL-arginine-p-nitroanilide was used as a trypsin substrate, half-maximal inhibition was observed at 22 nM. This protein also inhibits chymotrypsin, pancreatic elastase, rat mast cell chymase, and human serosal urokinase, but it does not inhibit human pulmonary tryptase, kallikrein, papain, pepsin, Staphylococcus aureus V8 protease, subtilisin, and thermolysin. Surprisingly, it did not inhibit any of the eight soluble endoproteases recently isolated from E. coli (i.e. proteases Do, Re, Mi, Fa, So, La, Ci, and Pi) nor the chymotrypsin-like (protease I) and trypsin-like (protease II) esterases in E. coli. The inhibitor is localized to the periplasmic space and its level did not change with different growth media or stages of cell growth. The physiological function of this E. coli trypsin inhibitor is unknown. We suggest that E. coli trypsin inhibitor be named "Ecotin."  相似文献   

16.
Characteristics of cyclo(His-Pro) binding sites in the rat liver were studied using 3H-labeled cyclo(His-Pro). Scatchard analysis suggested that the rat liver membrane had a single binding site with an apparent dissociation constant (Kd) of 7 X 10(-8) M. Pretreatment of membrane preparations with soybean trypsin inhibitor increased cyclo(His-Pro) binding, and the binding activity was sensitive to trypsin and phospholipase A digestion, suggesting that protein and phospholipid moieties are essential for cyclo(His-Pro) binding. Thiol reagents reduced binding activity, suggesting that the thiol group might be an important constituent of the cyclo(His-Pro) binding site. Cross-reactivities of TRH, TRH analogues, L-His and L-Pro were very low (0.2-9%). These findings indicate that specific binding sites for cyclo(His-Pro) in the rat liver have similar properties to the receptors for other polypeptides.  相似文献   

17.
Thioltransferase was purified 650-fold from rabbit liver by procedures including acid treatment, heat treatment, gel filtration on Sephadex G-50, column chromatography on DEAE-cellulose, isoelectric focusing (pH 3.5-10) and gel filtration on Sephadex G-75. The final enzyme preparation was almost homogeneous in polyacrylamide gel electrophoretic analysis. Only one active peak with an apparent molecular weight (Mr) of 13,000 was detected by gel filtration on Sephadex G-50 and only a single protein band with a molecular weight of 12,400 was detected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Isoelectric focusing revealed only one enzyme species, having an isoelectric point (pI) of 5.3. The enzyme has an optimum pH about 3.0 with S-sulfocysteine and GSH as substrates. The purified enzyme utilized some disulfides including S-sulfocysteine, alpha-chymotrypsin, trypsin, bovine serum albumin, and insulin as substrates in the presence of GSH. The enzyme does not act as a protein : disulfide isomerase (the activity of which can be measured in terms of reactivation of randomly reoxidized soybean Kunitz trypsin inhibitor). The enzyme activity was inhibited by chloramphenicol, but not by bacitracin. The inhibition by chloramphenicol was non-competitive (apparent K1 of 0.5 mM). Thioltransferase activity was found in the cytosol of various rabbit tissues.  相似文献   

18.
Yang X  Li J  Wang X  Fang W  Bidochka MJ  She R  Xiao Y  Pei Y 《Peptides》2006,27(7):1726-1731
An antifungal protein designated as Psc-AFP, with an apparent molecular mass of 18kDa, was isolated from a traditional Chinese herb, malaytea scurfpea (Psoralea corylifolia L.). The isolation procedure entailed extraction, cation exchange chromatography on CM FF, gel filtration chromatography on Superdex 75 and reversed-phase high performance liquid chromatography on SOURCE 5RPC column. Automated Edman degradation determined the partial N-terminal sequence of Psc-AFP to be NH2-EWEPVQNGGSSYYMVPRIWA, which displayed homology with plant trypsin inhibitors. The protease inhibitor activity of Psc-AFP was then confirmed by the inhibition on trypsin. Psc-AFP at 10 microM inhibited the mycelial growth of Alternari brassicae, Aspergillus niger, Fusarium oxysporum and Rhizoctonia cerealis, suggesting that Psc-AFP has a role in the defense against pathogens.  相似文献   

19.
A protein with trypsin inhibitory activity was purified to homogeneity from the seeds of Murraya koenigii (curry leaf tree) by ion exchange chromatography and gel filtration chromatography on HPLC. The molecular mass of the protein was determined to be 27 kDa by SDS-PAGE analysis under reducing conditions. The solubility studies at different pH conditions showed that it is completely soluble at and above pH 7.5 and slowly precipitates below this pH at a protein concentration of 1 mg/ml. The purified protein inhibited bovine pancreatic trypsin completely in a molar ratio of 1:1.1. Maximum inhibition was observed at pH 8.0. Kinetic studies showed that Murraya koenigii trypsin inhibitor is a competitive inhibitor with an equilibrium dissociation constant of 7 x 10(-9) M. The N-terminal sequence of the first 15 amino acids showed no similarity with any of the known trypsin inhibitors, however, a short sequence search showed significant homology to a Kunitz-type chymotrypsin inhibitor from Erythrina variegata.  相似文献   

20.
I have shown that cyclic AMP stimulates sugar uptake in rat thymocytes. However, trypsin treatment, which increases rat thymocyte cyclic AMP concentration, fails to increase sugar uptake. The purpose of the present study is to examine this seeming inconsistency, and to evaluate further the function of trypsin. Mild trypsin treatment of rat thymocytes produced a dose-related increase in cellular cyclic AMP concentration. Trypsin produced the same proportionate increase in cyclic AMP concentration in the presence or absence of optimal concentrations of the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, which suggests that trypsin acts to increase thymocyte cyclic AMP concentration by stimulating adenylate cyclase activity. Trypsin at concentrations of 0.3 mg/ml and less had no effect on the uptake of the glucose analogue 2-deoxy-D-glucose (2-DG), whereas at concentrations of 1 mg/ml and higher trypsin produced a small, dose-related, decrease in basal 2-DG uptake, becoming significantly lower than control values only at 5 mg/ml (-22.7%, P less than 0.05). Thymocyte sugar transporters, characterized by means of cytochalasin B binding, consist of a single class of sites with an apparent KD of 0.15 microM and maximum binding capacity of 2.73 pmol/20 x 10(6) cells (8.4 x 10(4) sites/thymocyte). Trypsin produced a dose-related decrease in the sugar-displaceable binding of cytochalasin B, so that at 5 mg of trypsin/ml the number of sugar transporters was decreased by approx. 50%. Thus trypsin treatment of rat thymocytes on the one hand increases cellular cyclic AMP concentration, which itself potentiates 2-DG uptake, and on the other hand decreases the number of sugar transporters, which itself decreases cellular sugar uptake, indicating that the apparent effect of trypsin on thymocyte 2-DG uptake is the result of the balance of its effects on these two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号