首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrogenic nature of the l-glutamate-stimulated Na+ flux was examined by measuring the distribution of the lipophilic anion [35S]thiocyanate (SCN?) into synaptic membrane vesicles that were incubated in a NaCl medium. Concentrations of l-glutamate from 10?7 to 10?4 M added to the incubation medium caused an enhanced intravesicular accumulation of SCN?. Based on the SCN? distribution in synaptic membrane vesicles it was calculated that 10 μM l-glutamate induced an average change in the membrane potential of + 13 mV. l-Glutamate enhanced both the Na+ and K+ conductance of these membranes as determined by increases in SCN? influx. Other neuroexcitatory amino acids and amino acid analogs (d-glutamate, l-aspartate, l-cysteine sulfinate, kainate, ibotenate, quisqualate, N-methyl-d-aspartate, and dl-homocysteate) also increased SCN? accumulation in synaptic membrane vesicles. These observations are indicative of the activation by l-glutamate and some of its analogs of excitatory amino acid receptor ion channel complexes in synaptic membranes.  相似文献   

2.
L-glutamate stimulation of Na+ efflux from brain synaptic membrane vesicles   总被引:4,自引:0,他引:4  
The characteristics of 22Na efflux from 22NaCl-preloaded synaptic plasma membrane vesicles and the stimulation of such efflux by gramicidin D and L-glutamate were determined. The rate and magnitude of passive Na+ efflux were dependent on the initial intravesicular NaCl concentration. A Na+:cation exchange process was also observed. Gramicidin D markedly enhanced Na+ efflux in a concentration-dependent manner and at 10 microM it caused total loss of intravesicular 22Na. The neuroexcitatory amino acids L-glutamate and D-glutamate, and the amino acid analog kainic acid, also stimulated Na+ efflux in a dose-dependent fashion, but their effects were weaker than those of gramicidin D. The mechanism of glutamate stimulation of Na+ flux is presumed to be through the activation of the glutamate receptor . Na+ channel complex in these membranes.  相似文献   

3.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

4.
The rate of efflux of L-glutamate from renal brush-border membrane vesicles was enhanced by Na+ and by extravesicular L-glutamate, but not by D-glutamate nor analogs of L-glutamate that do not share the Na+-L-glutamate co-transport system. These results suggest that efflux was mediated by the Na+-L-glutamate carrier. The efflux of L-glutamate was increased by extravesicular K+ or Rb+ but not by Li+, choline+, or Tris+. These findings, together with previous results showing that intravesicular K+ or Rb+ increased L-glutamate uptake and that a K+ gradient energized the concentrative uptake of the acidic amino acid in the absence of other gradients, provide evidence consistent with the hypothesis that the co-transport of Na+-L-glutamate is coupled to the transmembrane flux of K+.  相似文献   

5.
Antibodies (Abs) raised against the L-glutamate-binding protein (GBP) purified from bovine brain were used to define the possible physiologic activity of GBP in synaptic membranes. Three processes were examined for their sensitivity to the Abs: the excitatory amino acid stimulation of thiocyanate (SCN-) flux, the transport of L-glutamic acid across the synaptic membrane, and the depolarization-induced release of L-glutamate. Only the amino acid-induced changes in ion flux were inhibited by the anti-GBP Abs. The change in membrane potential produced by exposure of synaptic membranes to excitatory amino acids was measured as the increase in the uptake of the lipophilic anion SCN-. The L-glutamate-induced SCN- influx was 40 times more sensitive to inhibition by the anti-GBP Abs than the stimulation of ion flux by kainate, and 60 times more sensitive than that produced by quisqualate. The anti-GBP Abs did not inhibit the activation of ion flux produced by N-methyl-D-aspartate. The inhibition of glutamate-stimulated ion fluxes by the Abs was complete, whereas the inhibition of L-glutamate binding to either the rat or bovine brain GBP was not. The results obtained indicated that although the majority of the anti-GBP Abs were not directed against the glutamate recognition site of the GBP and of presumed synaptic membrane receptors, they were effective in blocking the activation of receptor-associated ion channels. Thus, the GBP may be considered a component of some excitatory amino acid receptor complexes.  相似文献   

6.
L-Glutamate and L-aspartate transport into osmotically active intestinal brush border membrane vesicles is specifically increased by Na+ gradient (extravesicular greater than intravesicular) which in addition energizes the transient accumulation (overshoot) of the two amino acids against their concentration gradients. The "overshoot" is observed at minimal external Na+ concentration of 100 mM for L-glutamate and 60 mM for L-aspartate; saturation with respect to [Na+] was observed at a concentration near 100 mM for both amino acids. Increasing amino acid concentration, saturation of the uptake rate was observed for L-glutamate and L-aspartate in the concentration range between 1 and 2 mM. Experiments showing mutual inhibition and transtimulation of the two amino acids indicate that the same Na+ -dependent transport system is shared by the two acidic amino acids. The imposition of diffusion potentials across the membrane vesicles artificially induced by addition of valinomycin in the presence of a K+ gradient supports the conclusion that the cotransport Na+/dicarboxylic amino acid in rat brush border membrane vesicles is electroneutral.  相似文献   

7.
Previous work with L-[3H]glutamate transport by lobster (Homarus americanus) hepatopancreatic brush border membrane vesicles (BBMV) indicated that the transport of this amino acid was stimulated by the presence of both Na+ and Cl- ions in the external medium, however, the specific catalytic or energetic role of each monovalent ion in amino acid transfer was not established (Ahearn and Clay (1987) J. Exp. Biol. 130, 175-191). The present study employs a variety of experimental treatments with this membrane preparation to clarify the nature of the ion dependency in the cotransport process. A zero-trans time course experiment using inwardly-directed transmembrane Na+ or Cl- gradients led to similar transient accumulations of the amino acid above equilibrium values in the presence of equilibrated concentrations of the respective counterions. The uptake overshoots observed in the presence of single ion gradients were significantly increased when gradients of both Na+ and Cl- were used simultaneously. When vesicles were pre-equilibrated with L-[3H]glutamate and either of the monovalent ions, an inwardly-directed gradient of each counterion led to the transient accumulation of additional labelled amino acid above its equilibrium concentration, indicating that either ion gradient was capable of energizing the net flow of L-glutamate. A cotransport stoichiometry of 1 Na+/1 Cl-/1 L-glutamate was established using the Static Head analysis where a balance of ion and amino acid driving forces were attained with a 7:1 Na+ or Cl- gradient (o greater than i) against a 7:1 L-glutamate gradient (i greater than o).  相似文献   

8.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

9.
Amino acid transport was studied in membranes of the peptidolytic, thermophilic, anaerobic bacterium Clostridium fervidus. Uptake of the negatively charged amino acid L-glutamate, the neutral amino acid L-serine, and the positively charged amino acid L-arginine was examined in membrane vesicles fused with cytochrome c-containing liposomes. Artificial ion diffusion gradients were also applied to establish the specific driving forces for the individual amino acid transport systems. Each amino acid was driven by the delta psi and delta mu Na+/F and not by the Z delta pH. The Na+ stoichiometry was estimated from the amino acid-dependent 22Na+ efflux and Na(+)-dependent 3H-amino acid efflux. Serine and arginine were symported with 1 Na+ and glutamate with 2 Na+. C. fervidus membranes contain Na+/Na+ exchange activity, but Na+/H+ exchange activity could not be demonstrated.  相似文献   

10.
The energetics of the Na+-dependent transport of D-glucose into osmotically active membrane vesicles, derived from the brush borders of the rabbit renal proximal tubule, was studied by determining how alterations in the electrochemical potential of the membrane induced by anions, ionophores, and a proton conductor affect the uptake of the sugar. The imposition of a large NaCl gradient (medium is greater than vesicle) resulted in the transient uptake of D-glucose into brush border membranes against its concentration gradient. In the presence of Na+ salts of isethionate or sulfate, both relatively impermeable anions, there was no accumulation of D-glucose above the equilibrium value. With Na+ salts of two highly permeable lipophilic anions, NO3- and SCN-, the transient overshoot was enhanced relative to that with Cl-. With Na+ salts whose mode of membrane translocation is electroneutral, i.e. acetate, bicarbonate, and phosphate, no overshoot was found. These findings suggest that only anions which penetrate the brush border membrane and generate an electrochemical potential, negative on the inside, permit the uphill Na+-dependent transport of D-glucose.  相似文献   

11.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

12.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

13.
Na+-dependent I- transport and I- counterflow were studied using phospholipid vesicles (P-vesicles) made of porcine thyroid plasma membranes and soybean phospholipid by sonication. 1) I- uptake by P-vesicles incubated in the presence of external Na+ was higher than that by P-vesicles incubated in choline+ instead of Na+. The vesicles exhibited Na+-dependent I- uptake. When P-vesicles were internally loaded with I- prior to incubation in Na+, a further increase in Na+-dependent I- uptake was observed, although the concentration of internal I- was very much higher than that outside. In the absence of external Na+, I- uptake by P-vesicles preloaded with I- was comparable to baseline uptake. 2) Na+-dependent I- uptake by P-vesicles not loaded with I- and enhanced Na+-dependent I- uptake by P-vesicles preloaded with I- were both inhibited by either of SCN- and ClO4- added outside the vesicles. 3) When P-vesicles were loaded with SCN- instead of I- and incubated in Na+, I- uptake by these vesicles was also higher than baseline Na+-dependent I- uptake. However, a ClO4- load did not result in an increase in I- uptake. These results indicate that Na+-dependent I- transport including Na+-dependent I- counterflow is specifically mediated by the thyroid I- carrier. SCN- - I- counterflow in addition to I- - I- counterflow occurs dependently on Na+, but ClO4- - I- counterflow does not.  相似文献   

14.
Uptake of L-alanine against a concentration gradient has been shown to occur with isolated brush border membranes from rat small intestine. An alanine transport system, displaying the following characteristics, was shown: (a) L-alanine was taken up and released faster than D-alanine; (b) Na+ as well as Li+ stimulated the uptake of both stereoisomers; (c) the uptake of L- and D-alanine showed saturation kinetics; (d) countertransport of L-alanine was shown; (e) other neutral amino acids inhibited L-alanine but not D-alanine entry when an electrochemical Na+ gradient across the membrane was present initially during incubation. No inhibition occurred in the absence of a Na+ gradient. The electrogenicity of L-alanine transport was established by three types of experiments: (a) Gradients of Na+ salts across the vesicle membrane (medium concentration greater than intravesicular concentration) supported a transient uptake of L-alanine above equilibrium level, and the lipophilic anion SCN- was the most effective counterion. (b) A gradient of K= across the membrane (vesicle greater than medium) likewise supported active transport of L-alanine into the vesicles provided the K= conductance of the membrane was increased with valinomycin. (c) Similarly, a proton gradient (vesicle greater than medium) in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an agent known to increase the proton conductance of membranes, produced an overshooting L-alanine uptake. A consideration of the possible forces, existing under the experimental conditions, suggests that the gradients of SCN-, K+ in the presence of valinomycin, and H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone contribute to the driving force for L-alanine transport by creating a diffusion potential. Since the presence of Na+ was required in all experiments with active L-alanine transport these results support the existence of a transport system in the brush border membrane which catalyzes the co-transport of Na+ and L-alanine across this membrane.  相似文献   

15.
A method is described for isolating plasma membrane vesicles from bovine tracheal epithelium. The procedure yields highly purified apical membranes which are enriched 19-fold in the marker enzyme, alkaline phosphatase. Contamination of this fraction by other organelles is minimal. Basolateral membranes isolated from the same preparation have a 4-fold enrichment of (Na+ + K+)-ATPase and a 2-fold reduction in alkaline phosphatase specific activity compared to the starting material. Assays of Na+ uptake by the apical membrane vesicles demonstrate their suitability for transport studies. Transport of Na+ into an intravesicular space was demonstrated by (1) a linear inverse correlation between Na+ uptake and medium osmolarity; (2) complete release of accumulated Na+ by treatment with detergent; and (3) a marked temperature-dependence of Na+ uptake rate. Other features of Na+ transport were (1) inhibition by amiloride; (2) insensitivity to furosemide; and (3) anion-dependence of uptake rate with the following selectivity:SCN- greater than Cl- greater than gluconate-.  相似文献   

16.
Previous work using human jejunal brush-border membrane vesicles has demonstrated the existence of a distinct transport system in man for acidic amino acids. This system is energized by an inwardly directed Na+ gradient and an outwardly directed K+ gradient. These studies further characterize the transport of L-glutamate in the human jejunal brush-border membrane vesicles. Efflux studies were performed by loading the brush-border membrane vesicles with radiolabeled L-glutamate and sodium chloride. Extravesicular K+ accelerated the efflux of L-glutamate when compared to extravesicular Na+ or choline, indicating that potassium serves to recycle the carrier. Unlabeled extravesicular L-glutamate (but not D-glutamate) also enhanced the efflux of radiolabeled L-glutamate demonstrating that there is a bidirectional similarity to the transport system. The effect of pH on the transport system was also investigated by varying the intravesicular and extravesicular pH from 5.5 to 9. A pH environment of 6.5 produced the highest initial uptake rates as well as the greatest overshoots for transport of L-glutamate into brush-border membrane vesicles. The imposition of an inwardly directed pH gradient (5.5 outside, 7.5 inside) accelerated both the influx and efflux of L-glutamate. These results demonstrate that the L-glutamate carrier system in human jejunum appears to have similar energizing characteristics in either direction across the brush-border membrane. In addition, the system operates at an optimal pH of 6.5 and protonation of the system may enhance its mobility.  相似文献   

17.
A monoclonal mouse IgM antibody (Z8E9) was raised against the Na(+)-L-glutamate cotransporter from rat brain. In a preparation of brain plasma membrane vesicles, Z8E9 binds specifically to a polypeptide with an apparent molecular weight of 70,000 and inhibits Na+ gradient-dependent L-glutamate cotransport (up to 50%) in brain membrane vesicles. In the membrane vesicles, the antibody does not alter the membrane permeability for Na+ and K+ nor the Na+ gradient-dependent uptake of gamma-aminobutyric acid. Kinetic experiments showed that Z8E9 does not alter the K0.5 values for L-glutamate and Na+ activation of L-glutamate transport. However, an apparent cooperativity observed for L-glutamate activation was increased, and the Vmax of L-glutamate transport was decreased. Immunostaining of rat cerebellum identified antigenic sites of Z8E9 in Golgi epithelial cells and astrocytes (by light and electron microscopy), whereas no labeling at nerve terminals was detected. The data suggest that a component of a Na(+)-L-glutamate cotransporter subtype has been identified that is specific for glia cells in brain.  相似文献   

18.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

19.
H Murer  U Hopfer    R Kinne 《The Biochemical journal》1976,154(3):597-604
Studies on proton and Na+ transport by isolated intestinal and renal brush-border-membrane vesicles were carried out to test for the presence of an Na+/H+-exchange system. Proton transport was evaluated as proton transfer from the intravesicular space to the incubation medium by monitoring pH changes in the membrane suspension induced by sudden addition of cations. Na+ transport was determined as Na+ uptake into the vesicles by filtration technique. A sudden addition of sodium salts (but not choline) to the membrane suspension provokes an acidification of the incubation medium which is abolished by the addition of 0.5% Triton X-100. Pretreatment of the membranes with Triton X-100 prevents the acidification. The acidification is also not observed if the [K+] and proton conductance of the membranes have been increased by the simultaneous addition of valinomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the K+-rich incubation medium. Either valinomycin or carbonyl cyanide p-trifluoromethoxyphenylhydrazone when added alone do not alter the response of the membranes to the addition of Na+. Na+ uptake by brush-border microvilli is enhanced in the presence of a proton gradient directed from the intravesicular space to the incubation medium. Under these conditions a transient accumulation of Na+ inside the vesicles is observed. It is concluded that intestinal and renal brush-border membranes contain a NA+/H+ antiport system which catalyses an electroneutral exchange of Na+ against protons and consequently can produce a proton gradient in the presence of a concentration difference for Na+. This system might be involved in the active proton secretion of the small intestine and the proximal tubule of the kidney.  相似文献   

20.
W Berner  R Kinne    H Murer 《The Biochemical journal》1976,160(3):467-474
Uptake of Pi into brush-border membrane vesicles isolated from rat small intestine was investigated by a rapid filtration technique. The following results were obtained. 1. At pH 7.4 in the presence of a NaCl gradient across the membrane (sodium concentration in the medium higher than sodium concentration in the vesicles), phosphate was taken up by a saturable transport system, which was competitively inhibited by arsenate. Phosphate entered the same osmotically reactive space as D-glucose, which indicates that transport into the vesicles rather than binding to the membranes was determined. 2. The amount of phosphate taken up initially was increased about fourfold by lowering the pH from 7.4 to 6.0.3. When Na+ was replaced by K+, Rb+ or Cs+, the initial rate of uptake decreased at pH 7.4 but was not altered at pH 6.0.4. Experiments with different anions (SCN-,Cl-, SO42-) and with ionophores (valinomycin, monactin) showed that at pH 7.4 phosphate transport in the presence of a Na+ gradient is almost independent of the electrical potential across the vesicle membrane, whereas at pH 6.0 phosphate transport involves the transfer of negative charge. It is concluded that intestinal brush-border membranes contain a Na+/phosphate co-transport system, which catalyses under physiological conditions an electroneutral entry of Pi and Na+ into the intestinal epithelial cell. In contrast with the kidney, probably univalent phosphate and one Na+ ion instead of bivalent phosphate and two Na+ ions are transported together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号