首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The general phosphate need in mammalian cells is accommodated by members of the Pi transport (PiT) family (SLC20), which use either Na+ or H+ to mediate inorganic phosphate (Pi) symport. The mammalian PiT paralogs PiT1 and PiT2 are Na+-dependent Pi (NaPi) transporters and are exploited by a group of retroviruses for cell entry. Human PiT1 and PiT2 were characterized by expression in Xenopus laevis oocytes with 32Pi as a traceable Pi source. For PiT1, the Michaelis-Menten constant for Pi was determined as 322.5 ± 124.5 µM. PiT2 was analyzed for the first time and showed positive cooperativity in Pi uptake with a half-maximal activity constant for Pi of 163.5 ± 39.8 µM. PiT1- and PiT2-mediated Na+-dependent Pi uptake functions were not significantly affected by acidic and alkaline pH and displayed similar Na+ dependency patterns. However, only PiT2 was capable of Na+-independent Pi transport at acidic pH. Study of the impact of divalent cations Ca2+ and Mg2+ revealed that Ca2+ was important, but not critical, for NaPi transport function of PiT proteins. To gain insight into the NaPi cotransport function, we analyzed PiT2 and a PiT2 Pi transport knockout mutant using 22Na+ as a traceable Na+ source. Na+ was transported by PiT2 even without Pi in the uptake medium and also when Pi transport function was knocked out. This is the first time decoupling of Pi from Na+ transport has been demonstrated for a PiT family member. Moreover, the results imply that putative transmembrane amino acids E55 and E575 are responsible for linking Pi import to Na+ transport in PiT2. inorganic phosphate transport; retroviral receptor; SLC20  相似文献   

2.
Inorganic phosphate(Pi) accumulates in the fibers of actively working musclewhere it acts at various sites to modulate contraction. To characterizethe role of Pi as a regulator of the sarcoplasmic reticulum(SR) calcium (Ca2+) release channel, we examined the actionof Pi on purified SR Ca2+ release channels,isolated SR vesicles, and skinned skeletal muscle fibers. In singlechannel studies, addition of Pi to the cis chamberincreased single channel open probability (Po;0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mMPi) by decreasing mean channel closed time; mean channelopen times were unaffected. In contrast, the ATP analog,,-methyleneadenosine 5'-triphosphate (AMP-PCP), enhancedPo by increasing single channel open time anddecreasing channel closed time. Pi stimulation of[3H]ryanodine binding by SR vesicles wassimilar at all concentrations of AMP-PCP, suggesting Pi andadenine nucleotides act via independent sites. In skinned musclefibers, 40 mM Pi enhanced Ca2+-inducedCa2+ release, suggesting an in situ stimulation ofthe release channel by high concentrations of Pi. Ourresults support the hypothesis that Pi may be an importantendogenous modulator of the skeletal muscle SR Ca2+ releasechannel under fatiguing conditions in vivo, acting via a mechanismdistinct from adenine nucleotides.

  相似文献   

3.
Characterization of inorganic phosphate transport in osteoclast-like cells   总被引:1,自引:0,他引:1  
Osteoclasts possess inorganic phosphate (Pi) transport systems to take up external Pi during bone resorption. In the present study, we characterized Pi transport in mouse osteoclast-like cells that were obtained by differentiation of macrophage RAW264.7 cells with receptor activator of NF-B ligand (RANKL). In undifferentiated RAW264.7 cells, Pi transport into the cells was Na+ dependent, but after treatment with RANKL, Na+-independent Pi transport was significantly increased. In addition, compared with neutral pH, the activity of the Na+-independent Pi transport system in the osteoclast-like cells was markedly enhanced at pH 5.5. The Na+-independent system consisted of two components with Km of 0.35 mM and 7.5 mM. The inhibitors of Pi transport, phosphonoformic acid, and arsenate substantially decreased Pi transport. The proton ionophores nigericin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone as well as a K+ ionophore, valinomycin, significantly suppressed Pi transport activity. Analysis of BCECF fluorescence indicated that Pi transport in osteoclast-like cells is coupled to a proton transport system. In addition, elevation of extracellular K+ ion stimulated Pi transport, suggesting that membrane voltage is involved in the regulation of Pi transport activity. Finally, bone particles significantly increased Na+-independent Pi transport activity in osteoclast-like cells. Thus, osteoclast-like cells have a Pi transport system with characteristics that are different from those of other Na+-dependent Pi transporters. We conclude that stimulation of Pi transport at acidic pH is necessary for bone resorption or for production of the large amounts of energy necessary for acidification of the extracellular environment. Na+-dependent phosphate cotransporter; RAW264.7; phosphate uptake  相似文献   

4.
Pyridoxal 5-phosphate, phenyl phosphate and acetyl phosphate,as well as rß-naphthyl monophosphate, inhibited photophosphorylationof spinach chloroplasts competitively with Pi and noncompetitivelywith ADP. The apparent dissociation constant of the inhibitor-enzymecomplex (Ki) values of pyridoxal 5-phosphate, phenyl phosphateand acetyl phosphate for the Pi site were 1.1, 3.8 and 2.4 mM,respectively. These organic phosphates inhibited Ca2+-ATPaseof the isolated coupling factor 1 (CF1) (EC 3.6.1.3 [EC] ) noncompetitivelywith ATP. AMP, creatine phosphate, fructose 1,6-bisphosphate,glucose 6-phosphate, 3-phosphoglyceric acid, ribose 5-phosphateand PPi did not significantly inhibit photophosphorylation.Like rß-naphthyl monophosphate, pyridoxal 5-phosphateand phenyl phosphate inhibited photophosphorylation and thecoupled electron transport, but were almost without effect onthe basal electron transport. On the other hand, acetyl phosphateconsiderably inhibited photophosphorylation, but had almostno effect on the coupled electron transport rate and the basalrate. The results suggest that these organic phosphates inhibitphotophosphorylation by binding at the Pi site on the activecenter of CF1 and that their binding inhibits the ATPase activityof isolated CF1. These four organic phosphates which inhibited photophosphorylationcompetitively with Pi could not substitute for ADP or ATP ininhibiting ferricyanide photoreduction by decreasing H+-permeabilitythrough CF1 and in protecting the ATPase of isolated CF1 againstcold-anion inactivation. 1 This work was supported in part by Grants-in-Aid for ScientificResearch from the Ministry of Education, Science and Culture,Japan to H.S. (Received May 25, 1981; Accepted September 28, 1981)  相似文献   

5.
Hormonal regulation of ENaCs: insulin and aldosterone   总被引:6,自引:0,他引:6  
Although a variety of hormones and other agents modulate renalNa+ transport acting by way of theepithelial Na+ channel (ENaC), themode(s), pathways, and their interrelationships in regulation of thechannel remain largely unknown. It is likely that several hormones maybe present concurrently in vivo, and it is, therefore, important tounderstand potential interactions among the various regulatory factorsas they interact with the Na+transport pathway to effect modulation ofNa+ reabsorption in distal tubulesand other native tissues. This study represents specifically adetermination of the interaction between two hormones, namely,aldosterone and insulin, which stimulate Na+ transport by entirelydifferent mechanisms. We have used a noninvasive pulse protocol ofblocker-induced noise analysis to determine changes in single-channelcurrent (iNa),channel open probability (Po), andfunctional channel density(NT) ofamiloride-sensitive ENaCs at various time points following treatmentwith insulin for 3 h of unstimulated control and aldosterone-pretreatedA6 epithelia. Independent of threefold differences of baseline values of transport caused by aldosterone, 20 nM insulin increased by threefold and within 10-30 min the density of the pool of apical membrane ENaCs(NT) involvedin transport. The very early (10 min) increases of channel density wereaccompanied by relatively small decreases ofiNa(10-20%) and decreases ofPo (28%) in the aldosterone-pretreated tissues but not the control unstimulated tissues. The early changes ofiNa,Po, andNT weretransient, returning very slowly over 3 h toward their respectivecontrol values at the time of addition of insulin. We conclude thataldosterone and insulin act independently to stimulate apicalNa+ entry into the cells of A6epithelia by increase of channel density.

  相似文献   

6.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

7.
Riboflavin uptake by human-derived colonic epithelial NCM460 cells   总被引:2,自引:0,他引:2  
Normal microflora ofthe large intestine synthesize a number of water-soluble vitaminsincluding riboflavin (RF). Recent studies have shown that colonicepithelial cells posses an efficient carrier-mediated mechanism forabsorbing some of these micronutrients. The aim of the present studywas to determine whether colonic cells also posses a carrier-mediatedmechanism for RF uptake and, if so, to characterize this mechanism andstudy its cellular regulation. Confluent monolayers of thehuman-derived nontransformed colonic epithelial cells NCM460 and[3H]RF were used in the study. Uptake of RF wasfound to be 1) appreciable and temperature and energydependent; 2) Na+ independent; 3) saturableas a function of concentration with an apparent Kmof 0.14 µM and Vmax of 3.29 pmol · mgprotein1 · 3 min1; 4) inhibited by the structural analogslumiflavin and lumichrome (Ki of 1.8 and 14.1 µM,respectively) but not by the unrelated biotin; 5) inhibited ina competitive manner by the membrane transport inhibitor amiloride(Ki = 0.86 mM) but not by furosemide, DIDS, orprobenecid; 6) adaptively regulated by extracellular RF levels with a significant and specific upregulation and downregulation in RFuptake in RF-deficient and oversupplemented conditions, respectively;and 7) modulated by an intracellularCa2+/calmodulin-mediated pathway. These studies demonstratefor the first time the existence of a specialized carrier-mediatedmechanism for RF uptake in an in vitro cellular model system of humancolonocytes. This mechanism appears to be regulated by extracellularsubstrate level and by an intracellularCa2+/calmodulin-mediated pathway. It is suggested that theidentified transport system may be involved in the absorption ofbacterially synthesized RF in the large intestine and that this sourceof RF may contribute toward RF homeostasis, especially that of colonocytes.

  相似文献   

8.
To study and define the early time-dependent response (6 h) ofblocker-sensitive epithelial Na+channels (ENaCs) to stimulation ofNa+ transport by aldosterone, weused a new modified method of blocker-induced noise analysis todetermine the changes of single-channel current (iNa) channel open probability(Po), andchannel density(NT) undertransient conditions of transport as measured by macroscopic short-circuit currents(Isc). In threegroups of experiments in which spontaneous baseline rates of transportaveraged 1.06, 5.40, and 15.14 µA/cm2, stimulation of transportoccurred due to increase of blocker-sensitive channels.NT variedlinearly over a 70-fold range of transport (0.5-35µA/cm2). Relatively small andslow time-dependent but aldosterone-independent decreases ofPo occurredduring control (10-20% over 2 h) and aldosterone experimentalperiods (10-30% over 6 h). When thePo of control andaldosterone-treated tissues was examined over the 70-fold extendedrange of Na+ transport,Po was observedto vary inversely withIsc, falling from~0.5 to ~0.15 at the highest rates ofNa+ transport or ~25% per3-fold increase of transport. Because decreases ofPo from anysource cannot explain stimulation of transport by aldosterone, it isconcluded that the early time-dependent stimulation ofNa+ transport in A6 epithelia isdue exclusively to increase of apical membraneNT.

  相似文献   

9.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

10.
The reabsorption of filtered di- andtripeptides as well as certain peptide mimetics from the tubular lumeninto renal epithelial cells is mediated by anH+-coupledhigh-affinity transport process. Here we demonstrate for the first timeH+-coupled uptake of dipeptidesinto the renal proximal tubule cell lineLLC-PK1. Transport was assessed1) by uptake studies using theradiolabeled dipeptideD-[3H]Phe-L-Ala,2) by cellular accumulation of the fluorescent dipeptide D-Ala-Lys-AMCA, and3) by measurement of intracellularpH (pHi) changes as aconsequence of H+-coupleddipeptide transport. Uptake ofD-Phe-L-Alaincreased linearly over 11 days postconfluency and showed all thecharacteristics of the kidney cortex high-affinity peptide transporter,e.g., a pH optimum for transport ofD-Phe-L-Alaof 6.0, an apparent Km value forinflux of 25.8 ± 3.6 µM, and affinities of differently chargeddipeptides or the -lactam antibiotic cefadroxil to the binding sitein the range of 20-80 µM.pHi measurements established thepeptide transporter to induce pronounced intracellular acidification inLLC-PK1 cells and confirm itspostulated role as a cellular acid loader.

  相似文献   

11.
Skeletal muscle fiber types differ in their contents of total phosphate, which includes inorganic phosphate (Pi) and high-energy organic pools of ATP and phosphocreatine (PCr). At steady state, uptake of Pi into the cell must equal the rate of efflux, which is expected to be a function of intracellular Pi concentration. We measured 32P-labeled Pi uptake rates in different muscle fiber types to determine whether they are proportional to cellular Pi content. Pi uptake rates in isolated, perfused rat hindlimb muscles were linear over time and highest in soleus (2.42 ± 0.17 µmol·g–1·h–1), lower in red gastrocnemius (1.31 ± 0.11 µmol·g–1·h–1), and lowest in white gastrocnemius (0.49 ± 0.06 µmol·g–1·h–1). Reasonably similar rates were obtained in vivo. Pi uptake rates at plasma Pi concentrations of 0.3–1.7 mM confirm that the Pi uptake process is nearly saturated at normal plasma Pi levels. Pi uptake rate correlated with cellular Pi content (r = 0.99) but varied inversely with total phosphate content. Sodium-phosphate cotransporter (PiT-1) protein expression in soleus and red gastrocnemius were similar to each other and seven- to eightfold greater than PiT-1 expression in white gastrocnemius. That the PiT-1 expression pattern did not match the pattern of Pi uptake across fiber types implies that other factors are involved in regulating Pi uptake in skeletal muscle. Furthermore, fractional turnover of the cellular Pi pool (0.67, 0.57, and 0.33 h–1 in soleus, red gastrocnemius, and white gastrocnemius, respectively) varies among fiber types, indicating differential management of intracellular Pi, likely due to differences in resistance to Pi efflux from the fiber. inorganic phosphate; sodium-inorganic phosphate transporters; PiT-2; inorganic phosphate efflux  相似文献   

12.
The objectives of this research were to determine thecontribution of excitation-contraction (E-C) coupling failure to the decrement in maximal isometric tetanic force(Po) in mouse extensor digitorumlongus (EDL) muscles after eccentric contractions and to elucidatepossible mechanisms. The left anterior crural muscles of femaleICR mice (n = 164) wereinjured in vivo with 150 eccentric contractions.Po, caffeine-,4-chloro-m-cresol-, andK+-induced contracture forces,sarcoplasmic reticulum (SR) Ca2+release and uptake rates, and intracellularCa2+ concentration([Ca2+]i)were then measured in vitro in injured and contralateral control EDLmuscles at various times after injury up to 14 days. On the basis ofthe disproportional reduction inPo (~51%) compared with caffeine-induced force (~11-21%), we estimate that E-C coupling failure can explain 57-75% of thePo decrement from 0 to 5 days postinjury. Comparable reductions inPo andK+-induced force (51%), and minorreductions (0-6%) in the maximal SRCa2+ release rate, suggest thatthe E-C coupling defect site is located at the t tubule-SR interfaceimmediately after injury. Confocal laser scanning microscopy indicatedthat resting[Ca2+]iwas elevated and peak tetanic[Ca2+]iwas reduced, whereas peak4-chloro-m-cresol-induced[Ca2+]iwas unchanged immediately after injury. By 3 days postinjury, 4-chloro-m-cresol-induced[Ca2+]ibecame depressed, probably because of decreased SRCa2+ release and uptake rates(17-31%). These data indicate that the decrease inPo during the first several daysafter injury primarily stems from a failure in the E-C couplingprocess.

  相似文献   

13.
Muchevidence supports the view that hypoxic/ischemic injury is largely dueto increased intracellular Ca concentration([Ca]i) resulting from 1) decreasedintracellular pH (pHi), 2) stimulated Na/H exchangethat increases Na uptake and thus intracellular Na (Nai),and 3) decreased Na gradient that decreases or reverses net Catransport via Na/Ca exchange. The Na/H exchanger (NHE) is alsostimulated by hypertonic solutions; however, hypertonic media mayinhibit NHE's response to changes in pHi (Cala PM and Maldonado HM. J Gen Physiol 103: 1035-1054, 1994). Thus wetested the hypothesis that hypertonic perfusion attenuates acid-induced increases in Nai in myocardium and, thereby, decreasesCai accumulation during hypoxia. Rabbit hearts wereLangendorff perfused with HEPES-buffered Krebs-Henseleit solutionequilibrated with 100% O2 or 100% N2. Hypertonic perfusion began 5 min before hypoxia or normoxicacidification (NH4Cl washout). Nai,[Ca]i, pHi, and high-energyphosphates were measured by NMR. Control solutions were 295 mosM, andhypertonic solutions were adjusted to 305, 325, or 345 mosM by additionof NaCl or sucrose. During 60 min of hypoxia (295 mosM),Nai rose from 22 ± 1 to 100 ± 10 meq/kg dry wt while[Ca]i rose from 347 ± 11 to 1,306 ± 89 nM.During hypertonic hypoxic perfusion (325 mosM), increases inNai and [Ca]i were reduced by 65 and 60%, respectively (P < 0.05). Hypertonicperfusion also diminished Na uptake after normoxic acidification by87% (P < 0.05). The data are consistent with the hypothesisthat mild hypertonic perfusion diminishes acid-induced Na accumulationand, thereby, decreases Na/Ca exchange-mediated Caiaccumulation during hypoxia.

  相似文献   

14.
The involvement of cAMP- andCa2+-mediated pathways in theactivation of tyrosine hydroxylase (TH) gene expression by nicotine wasexamined in PC-12 cells. ExtracellularCa2+ and elevations inintracellular Ca2+ concentration([Ca2+]i)were required for nicotine to increase TH mRNA. The nicotine-elicited rapid rise in[Ca2+]iwas inhibited by blockers of either L-type or N-type, and to a lesserextent P/Q-, but not T-type, voltage-gatedCa2+ channels. With continualnicotine treatment,[Ca2+]ireturned to basal levels within 3-4 min. After a lag of~5-10 min, there was a smaller elevation in[Ca2+]ithat persisted for 6 h and displayed different responsiveness toCa2+ channel blockers. This secondphase of elevated[Ca2+]iwas blocked by an inhibitor of store-operatedCa2+ channels, consistent with theobserved generation of inositol trisphosphate.1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM), when added before or 2 h after nicotine,prevented elevation of TH mRNA. Nicotine treatment significantly raised cAMP levels. Addition of the adenylyl cyclase inhibitor2',5'-dideoxyadenosine (DDA) prevented thenicotine-elicited phosphorylation of cAMP response element bindingprotein. DDA also blocked the elevation of TH mRNA only when addedafter the initial transient rise in [Ca2+]iand not after 1 h. This study reveals that several temporal phases areinvolved in the induction of TH gene expression by nicotine, each ofthem with differing requirements forCa2+ and cAMP.

  相似文献   

15.
Blocker-inducednoise analysis of epithelial Na+ channels (ENaCs) was usedto investigate how inhibition of an LY-294002-sensitive phosphatidylinositol 3-kinase (PI 3-kinase) alters Na+transport in unstimulated and aldosterone-prestimulated A6 epithelia. From baseline Na+ transport rates(INa) of 4.0 ± 0.1 (unstimulated) and9.1 ± 0.9 µA/cm2 (aldosterone), 10 µM LY-294002caused, following a relatively small initial increase of transport, acompletely reversible inhibition of transport within 90 min to 33 ± 6% and 38 ± 2% of respective baseline values. Initialincreases of transport could be attributed to increases of channel openprobability (Po) within 5 min to 143 ± 17% (unstimulated) and 142 ± 10% of control (aldosterone) frombaseline Po averaging near 0.5. Inhibition oftransport was due to much slower decreases of functional channeldensities (NT) to 28 ± 4% (unstimulated)and 35 ± 3% (aldosterone) of control at 90 min. LY-294002 (50 µM) caused larger but completely reversible increases ofPo (215 ± 38% of control at 5 min) andmore rapid but only slightly larger decreases ofNT. Basolateral exposure to LY-294002 induced nodetectable effect on transport, Po or NT. We conclude that an LY-294002-sensitive PI3-kinase plays an important role in regulation of transport bymodulating NT and Po ofENaCs, but only when presented to apical surfaces of the cells.

  相似文献   

16.
The ability to image calciumsignals at subcellular levels within the intact depolarizing heartcould provide valuable information toward a more integratedunderstanding of cardiac function. Accordingly, a system combiningtwo-photon excitation with laser-scanning microscopy was developed tomonitor electrically evoked [Ca2+]itransients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]itransients were recorded at depths 100 µm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked[Ca2+]i transients were highly synchronizedamong neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50%(t90-50%) and from 50 to 10%(t50-10%) of the peak[Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and94 ± 6 ms (n = 19, P < 0.05 vs.1 Hz) in rhod-2-loaded cardiomyocytes.[Ca2+]i decay was markedly slower infura-2-loaded hearts (t90-50% at 1 Hz,128 ± 9 ms and at 2 Hz, 88 ± 5 ms;t50-10% at 1 Hz, 214 ± 18 ms and at2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of[Ca2+]i decline resulted from increasedcytosolic Ca2+ buffering, because the kinetics of rhod-2decay resembled those obtained with fura-2 after incorporation of theCa2+ chelator BAPTA. Propagating calcium waves and[Ca2+]i amplitude alternans were readilydetected in paced hearts. This approach should be of general utility tomonitor the consequences of genetic and/or functional heterogeneity incellular calcium signaling within whole mouse hearts at tissue depthsthat have been inaccessible to single-photon imaging.

  相似文献   

17.
Mitchell, R. W., E. Rühlmann, H. Magnussen, N. M. Muñoz, A. R. Leff, and K. F. Rabe. Conservation ofbronchiolar wall area during constriction and dilation of humanairways. J. Appl. Physiol. 82(3):954-958, 1997.We assessed the effect of smooth musclecontraction and relaxation on airway lumen subtended by the internalperimeter(Ai)and total cross-sectional area (Ao)of human bronchial explants in the absence of the potential lungtethering forces of alveolar tissue to test the hypothesis thatbronchoconstriction results in a comparable change ofAi andAo.Luminal area (i.e.,Ai) andAowere measured by using computerized videomicrometry, and bronchial wallarea was calculated accordingly. Images on videotape were captured;areas were outlined, and data were expressed as internal pixel numberby using imaging software. Bronchial rings were dissected in 1.0- to1.5-mm sections from macroscopically unaffected areas of lungs frompatients undergoing resection for carcinoma, placed in microplate wellscontaining buffered saline, and allowed to equilibrate for 1 h.Baseline, Ao[5.21 ± 0.354 (SE)mm2], andAi(0.604 ± 0.057 mm2) weremeasured before contraction of the airway smooth muscle (ASM) withcarbachol. MeanAinarrowed by 0.257 ± 0.052 mm2in response to 10 µM carbachol (P = 0.001 vs. baseline). Similarly, Aonarrowed by 0.272 ± 0.110 mm2in response to carbachol (P = 0.038 vs. baseline; P = 0.849 vs. change inAi).Similar parallel changes in cross-sectional area forAiandAowere observed for relaxation of ASM from inherent tone of otherbronchial rings in response to 10 µM isoproterenol. We demonstrate aunique characteristic of human ASM; i.e., both luminal and totalcross-sectional area of human airways change similarly on contractionand relaxation in vitro, resulting in a conservation of bronchiolarwall area with bronchoconstriction and dilation.

  相似文献   

18.
The present study compared the microdialysis ethanoloutflow-inflow technique for estimating blood flow (BF) in skeletalmuscle of humans with measurements by Doppler ultrasound of femoralartery inflow to the limb(BFFA). The microdialysis probeswere inserted in the vastus lateralis muscle and perfused with a Ringeracetate solution containing ethanol,[2-3H]adenosine (Ado),andD-[14C(U)]glucose.BFFA at rest increased from0.16 ± 0.02 to 1.80 ± 0.26 and 4.86 ± 0.53 l/minwith femoral artery infusion of Ado (AdoFA,i) at 125 and 1,000 µg · min1 · l1thigh volume (low dose and high dose, respectively;P < 0.05) and to 3.79 ± 0.37 and6.13 ± 0.65 l/min during one-legged, dynamic, thigh muscle exercisewithout and with high AdoFA,i,respectively (P < 0.05). The ethanoloutflow-to-inflow ratio (38.3 ± 2.3%) and the probe recoveries(PR) for [2-3H]Ado(35.4 ± 1.6%) and forD-[14C(U)]glucose(15.9 ± 1.1%) did not change withAdoFA,i at rest (P = not significant). During exercisewithout and with AdoFA,i, theethanol outflow-to-inflow ratio decreased(P < 0.05) to a similar level of17.5 ± 3.4 and 20.6 ± 3.2%, respectively(P = not significant), respectively,while the PR increased (P < 0.05) toa similar level (P = not significant)of 55.8 ± 2.8 and 61.2 ± 2.5% for[2-3H]Ado and to 42.8 ± 3.9 and 45.2 ± 5.1% forD-[14C(U)]glucose.Whereas the ethanol outflow-to-inflow ratio and PR correlated inverselyand positively, respectively, to the changes in BF during muscularcontractions, neither of the ratio nor PR correlated tothe AdoFA,i-induced BF increase.Thus the ethanol outflow-to-inflow ratio does not represent skeletalmuscle BF but rather contraction-induced changes in molecular transport in the interstitium or over the microdialysis membrane.

  相似文献   

19.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

20.
Members of the SLC20 family or type III Na+-coupled Pi cotransporters (PiT-1, PiT-2) are ubiquitously expressed in mammalian tissue and are thought to perform a housekeeping function for intracellular Pi homeostasis. Previous studies have shown that PiT-1 and PiT-2 mediate electrogenic Pi cotransport when expressed in Xenopus oocytes, but only limited kinetic characterizations were made. To address this shortcoming, we performed a detailed analysis of SLC20 transport function. Three SLC20 clones (Xenopus PiT-1, human PiT-1, and human PiT-2) were expressed in Xenopus oocytes. Each clone gave robust Na+-dependent 32Pi uptake, but only Xenopus PiT-1 showed sufficient activity for complete kinetic characterization by using two-electrode voltage clamp and radionuclide uptake. Transport activity was also documented with Li+ substituted for Na+. The dependence of the Pi-induced current on Pi concentration was Michaelian, and the dependence on Na+ concentration indicated weak cooperativity. The dependence on external pH was unique: the apparent Pi affinity constant showed a minimum in the pH range 6.2–6.8 of 0.05 mM and increased to 0.2 mM at pH 5.0 and pH 8.0. Xenopus PiT-1 stoichiometry was determined by dual 22Na-32Pi uptake and suggested a 2:1 Na+:Pi stoichiometry. A correlation of 32Pi uptake and net charge movement indicated one charge translocation per Pi. Changes in oocyte surface pH were consistent with transport of monovalent Pi. On the basis of the kinetics of substrate interdependence, we propose an ordered binding scheme of Na+:H2PO4:Na+. Significantly, in contrast to type II Na+-Pi cotransporters, the transport inhibitor phosphonoformic acid did not inhibit PiT-1 or PiT-2 activity. Na+-Pi cotransport; two-electrode voltage clamp; surface pH electrode; SLC20; retroviral receptor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号