首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The amino acid sequence of the calmodulin obtained from sea anemone muscle was determined. The calmodulin was composed of 148 amino acid residues and its amino terminal was blocked. When compared with bovine brain calmodulin, the number of amino acid residues per molecule was the same and there were 3 replacements at residues 99 (Tyr → Phe), 143 (Gln → Lys) and 147 (Ala → Ser).  相似文献   

2.
The amino acid sequence of monal pheasant lysozyme and its activity were analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had one amino acid substitution at position 102 (Arg to Gly) comparing with Indian peafowl lysozyme and four amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), and 121 (Gln to His) with chicken lysozyme. Analysis of the time-courses of reaction using N-acetylglucosamine pentamer as a substrate showed a difference of binding free energy change (-0.4 kcal/mol) at subsites A between monal pheasant and Indian peafowl lysozyme. This was assumed to be caused by the amino acid substitution at subsite A with loss of a positive charge at position 102 (Arg102 to Gly).  相似文献   

3.
R2R3-MYB genes play a pivotal role in regulating anthocyanin accumulation. Here, we report two tandemly duplicated R2R3-MYB genes in peach, PpMYB10.1 and PpMYB10.2, with the latter showing lower ability to induce anthocyanin accumulation than the former. Site-directed mutation assay revealed two amino acid changes in the R3 repeat, Arg/Lys66 and Gly/Arg93, responsible for functional divergence between these two PpMYB10 genes. Anthocyanin-promoting activity of PpMYB10.2 was significantly increased by a single amino acid replacement of Arg93 with Gly93. However, either the Gly93 → Arg93 or Arg66 → Lys66 substitutions alone showed little impact on anthocyanin-promoting activity of PpMYB10.1, but simultaneous substitutions caused a significant decrease. Reciprocal substitution of Arg/Gly93 could significantly alter binding affinity to PpbHLH3, while the Arg66 → Lys66 substitution is predicted to affect the folding of the MYB DNA-binding domain, instead of PpbHLH3-binding affinity. Overall, the change of anthocyanin-promoting activity was accompanied with that of bHLH-binding affinity, suggesting that DNA-binding affinity of R2R3-MYBs depends on their bHLH partners. Our study is helpful for understanding of functional evolution of R2R3-MYBs and their interaction with DNA targets.  相似文献   

4.
To study the structure and function of reptile lysozymes, we have reported their purification, and in this study we have established the amino acid sequence of three egg white lysozymes in soft-shelled turtle eggs (SSTL A and SSTL B from Trionyx sinensis, ASTL from Amyda cartilaginea) by using the rapid peptide mapping method. The established amino acid sequence of SSTL A, SSTL B, and ASTL showed substitutions of 43, 42, and 44 residues respectively when compared with the HEWL (hen egg white lysozyme) sequence. In these reptile lysozymes, SSTL A had one substitution compared with SSTL B (Gly126Asp) and had an N-terminal extra Gly and 11 substitutions compared with ASTL. SSTL B had an N-terminal extra Gly and 10 residues different from ASTL. The sequence of SSTL B was identical to soft-shelled turtle lysozyme from STL (Trionyx sinensis japonicus). The Ile residue at position 93 of ASTL is the first report in all C-type lysozymes. Furthermore, amino acid substitutions (Phe34His, Arg45Tyr, Thr47Arg, and Arg114Tyr) were also found at subsites E and F when compared with HEWL. The time course using N-acetylglucosamine pentamer as a substrate exhibited a reduction of the rate constant of glycosidic cleavage and increase of binding free energy for subsites E and F, which proved the contribution for amino acids mentioned above for substrate binding at subsites E and F. Interestingly, the variable binding free energy values occurred on ASTL, may be contributed from substitutions at outside of subsites E and F.  相似文献   

5.
In the preceding paper (Lukas, Iverson, Schleicher, Watterson 1984 Plant Physiol 75: 788-795), we reported that the amino acid sequence of spinach calmodulin has at least 13 amino acid sequence differences from vertebrate calmodulin. In the present study, we investigated the effect of these amino acid sequence substitutions on the enzyme activator properties of vertebrate and plant calmodulins. Calmodulins from spinach and the green alga Chlamydomonas reinhardtii activate chicken gizzard myosin light chain kinase in a manner similar but not identical to chicken calmodulin. In contrast, these calmodulins have very different NAD kinase activator properties. The concentration required for half-maximal activation of pea seedling NAD kinase by spinach calmodulin (3-4 nanomolar) is lower than the corresponding concentrations of chicken (20 nanomolar) and Chlamydomonas (40 nanomolar) calmodulins. However, the maximum level of activation obtained with Chlamydomonas calmodulin is 4- to 6-fold higher than spinach or chicken calmodulin. These data indicate that the limited structural heterogeneity among calmodulins have differential effects on their biochemical activities.  相似文献   

6.

Background

Epidemiologic studies have reported the association of X-ray repair cross-complementary group 1 (XRCC1) Arg399Gln polymorphisms with susceptibility to squamous cell carcinoma of the head and neck (HNSCC). However, the results were conflictive rather than conclusive. The purpose of this study was to clarify the association of XRCC1 Arg399Gln variants with HNSCC risk.

Methods

Systematic searches were performed through the search engines of PubMed, Elsevier, Science Direct, CNKI and Chinese Biomedical Literature Database. Summary odds ratio (OR) with 95% confidence intervals (CI) was computed to estimate the strength association.

Results

Overall, we did not observe any association of XRCC1 Arg399Gln polymorphisms with HNSCC risk in total population (OR = 0.95, 95% CI: 0.76–1.19 for Gln/Gln vs. Arg/Arg, OR = 1.05, 95% CI: 0.92–1.20 for Arg/Gln vs. Arg/Arg, and OR = 1.03, 95% CI: 0.90–1.18 for Gln/Gln+Arg/Gln vs. Arg/Arg) based on 18 studies including 3917 cases and 4560 controls. In subgroup analyses, we observed an increased risk of XRCC1 399 Arg/Gln genotype for HNSCC in Caucasians (OR = 1.20, 95% CI: 1.00–1.44) and Gln/Gln genotype for larynx squamous cell carcinoma (OR = 1.63, 95% CI: 1.10–2.40). We did not observe any association between XRCC1 Arg399Gln variants and HNSCC risk in additional subgroup analyses.

Conclusion

The results from this present meta-analysis suggest that XRCC1 Arg399Gln variants may contribute to HNSCC risk among Caucasians and to the risk of larynx squamous cell carcinoma. Further, well-designed studies with larger sample sizes are required to verify our findings.  相似文献   

7.
  • 1.1. Oligonucleotide-directed mutagenesis of APH(3')-II was used to investigate the functions of key amino acids in the P-loop analogous motif of the enzyme.
  • 2.2. The mutations of Gly205 → Glu, Gly210 → Ala and Arg211 → Pro considerably reduced the resistance of the resulting strains to KM and to related drugs, e.g. G418.
  • 3.3. Similarly, enzyme activity in the crude extracts of these mutants was substantially reduced as well as the enzyme's affinity for Mg2+ ATP.
  • 4.4. Alternatively substitutions at a highly conserved basic residue (Arg211 → Lys and Arg211 → His) were not sufficient for the enzyme to sustain the activity at a level comparable to that of the wildtype.
  • 5.5. Moreover, an Arg211 → His mutation drastically reduced affinity of the enzyme for Mg2+ ATP.
  • 6.6. This argues the importance of Arg211 residue in contributing to the formation of the P-loop structure in addition to its involvement in phosphoryl transfer reaction.
  • 7.7. Computer analysis of the secondary structure predicted that the APH(3')-II loop connects a β -strand to an α-helix and that the above mutations caused varying degrees of structural distortions at the corresponding regions of the protein.
  相似文献   

8.
9.

Background

In the X-ray repair cross-complementing group 1 (XRCC1) gene, a polymorphism, Arg399Gln (rs25487), has been shown to change neoconservative amino acid and thus result in alternation of DNA repair capacity. Numerous studies have investigated the association between Arg399Gln and breast cancer risk in the American population, but yielding inconsistent results. This study aimed to clarify the role of this polymorphism in susceptibility to breast cancer.

Methods

Literatures were searched in multiple databases including PubMed, Springer Link, Ovid, EBSCO and ScienceDirect databases up to April 2013. A comprehensive meta-analysis was conducted to estimate the overall odds ratio (OR), by integrating data from 18 case control studies of 10846 cases and 11723 controls in the American population.

Results

Overall, significant association was observed between the Arg399Gln polymorphism and breast cancer risk under the random-effects model (OR for dominant model = 1.12, 95% CI: 1.02–1.24, P heterogeneity = 0.003; OR for additive model = 1.07, 95% CI: 1.01–1.14, P heterogeneity = 0.017). Further sensitivity analysis supported the robust stability of this current result by showing similar ORs before and after removal of a single study.

Conclusions

This meta-analysis suggests that the XRCC1 Arg399Gln polymorphism may significantly contribute to susceptibility of breast cancer in the American population.  相似文献   

10.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

11.
The amino acid sequence of goat alpha-lactalbumin   总被引:2,自引:0,他引:2  
The amino acid sequence of goat α-lactalbumin has been established from the structures of peptides isolated from trypsin and thermolysin digests of the reduced aminoethylated protein and from a chymotrypsin digest of the reduced carboxamidomethylated protein. The amino-terminal sequence was confirmed by automatic sequencer analysis. Of the previously sequenced species variants of α-lactalbumin, the bovine protein is most similar to the goat, differing in only 12 amino acid substitutions. One difference between these proteins corresponds to a substitution found in the bovine A genetic variant (Arg10 → Gln). The relevance of the structure to the evolutionary relationships in the α-lactalbumin-lysozyme family of proteins is discussed.  相似文献   

12.

Background

Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB.

Methods

Site-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency.

Results

Substitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion.

Conclusion

Gln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters.  相似文献   

13.
Rat cellular retinol-binding protein II (CRBP II) is an abundant 134-residue intestinal protein that binds all-trans-retinol and all-trans-retinal. It belongs to a family of homologous, 15-kDa cytoplasmic proteins that bind hydrophobic ligands in a noncovalent fashion. These binding proteins include a number of proteins that bind long chain fatty acids. X-ray analyses of the structure of two family members, rat intestinal fatty acid-binding protein and bovine myelin P2 protein, indicate that they have a high degree of conformational similarity and that the carboxylate group of their bound fatty acid interacts with a delta-guanidium group of at least 1 of 2 "buried" arginine residues. These 2 Arg residues are conserved in other family members that bind long chain fatty acids and in cellular retinoic acid-binding protein, but are replaced by Gln109 and Gln129 in CRBP II. We have genetically engineered two amino acid substitutions in CRBP II: 1) Gln109 to Arg and 2) Gln129 to Arg. The purified Escherichia coli-derived CRBP II mutant proteins were analyzed by fluorescence and nuclear magnetic resonance spectroscopy. Both mutants exhibit markedly decreased binding of all-trans-retinol and all-trans-retinaldehyde, but no increased binding of all-trans-retinoic acid. Arg substitution for Gln109 but not for Gln129 produces a dramatic increase in palmitate binding activity. Analysis of the endogenous fatty acids associated with the purified E. coli-derived proteins revealed that E. coli-derived intestinal fatty acid binding protein and the Arg109 CRBP II mutant are complexed with endogenous fatty acids in a qualitatively and quantitatively similar manner. These results provide evidence that this internal Arg may play an important role in the binding of long chain fatty acids by members of this protein family.  相似文献   

14.

Background

Three extensively investigated polymorphisms (Arg399Gln, Arg194Trp, and Arg280His) in the X-ray repair cross-complementing group 1 (XRCC1) gene have been implicated in risk for glioma. However, the results from different studies remain inconsistent. To clarify these conflicts, we performed a quantitative synthesis of the evidence to elucidate these associations in the Chinese population.

Methods

Data were extracted from PubMed and EMBASE, with the last search up to August 21, 2014. Meta-analysis was performed by critically reviewing 8 studies for Arg399Gln (3062 cases and 3362 controls), 8 studies for Arg194Trp (3419 cases and 3680 controls), and 5 studies for Arg280His (2234 cases and 2380 controls). All of the statistical analyses were performed using the software program, STATA (version 11.0).

Results

Our analysis suggested that both Arg399Gln and Arg194Trp polymorphisms were significantly associated with increased risk of glioma (for Arg399Gln polymorphism: Gln/Gln vs. Arg/Arg, OR = 1.82, 95% CI = 1.46–2.27, P = 0.000; Arg/Gln vs. Arg/Arg, OR = 1.25, 95% CI = 1.10–1.42, P = 0.001 and for Arg194Trp polymorphism: recessive model, OR = 1.78, 95% CI = 1.44–2.19, P = 0.000), whereas the Arg280His polymorphism had no influence on the susceptibility to glioma in a Chinese population.

Conclusions

This meta-analysis suggests that there may be no association between the Arg280His polymorphism and glioma risk, whereas the Arg399Gln/Arg194Trp polymorphisms may contribute to genetic susceptibility to glioma in the Chinese population. Nevertheless, large-scale, well-designed and population-based studies are needed to further evaluate gene-gene and gene–environment interactions, as well as to measure the combined effects of these XRCC1 variants on glioma risk.  相似文献   

15.
The cytoplasmic part of CD4 is known to be essential for the interaction with the human immunodeficiency virus type 1 proteins Vpu and Nef. The 17 amino acid synthetic peptide CD4 (403–419) with the amino acid sequence of the membrane proximal part of the cytoplasmic domain of the human CD4 receptor was structurally investigated by circular dichroism and nuclear magnetic resonance spectroscopy. The average -helical content of the peptide could be estimated to be around 25%. Chemical shift index analysis and the connectivity pattern in nuclear Overhauser enhancement spectra located the -helical part of the peptide from Gln403 to Arg412. It may be speculated that this amphipathic -helix is the contact region with the Vpu and Nef proteins.The authors thank Prof. F.X. Schmid for help with the CD spectra.  相似文献   

16.
Seven defective variants of the NADP-specific glutamate dehydrogenase of Neurospora crassa, resulting from missense mutations in the am gene, are quantitatively different from the wild type enzyme in the allosteric equilibrium between enzymically active A and inactive I conformations, and in the kinetics of conformational transitions between these states. These abnormalities have been defined using measurements of enzymic activity and of the intrinsic tryptophan fluorescence emission of the proteins.The protein from am1(Ser336 → Phe) is hyperstable in the A conformation but this state is enzymically inactive because it fails to bind coenzyme. The other six variants are potentially active but are, to different extents, hyperstable in the I conformation. They form a series of analogues, those of am131 (substitution not determined), am130(Pro75 → Ser), am3(Glu393 → Gly), am2(His142 → Gln), am19(Lys141 → Met) in order of increasing abnormality of the equilibrium position. am122(Trp389 changed to an undetermined residue) resembles am19. The hyperstability is sufficient to explain the auxotrophy of am The proteins of am131 and am130 are, in addition, abnormally prone to denaturation. These hyperstabilities of the I state are small in free energy terms, consistent with the fact that the defects of some variants may be corrected or partially corrected by second site substitutions or by complementation in hybrid hexamers with am1 protein.Five out of seven amino acid substitutions known to affect this equilibrium (including Gln391 → Arg of revertant am1924) involve charged residues clustered around positions 141 and 391. Interactions between these two parts of the polypeptide are implicated in stabilizing the A state of the enzyme, possibly by providing protonatable groups or part of the dicarboxylate binding site, and in affecting the environment of a tryptophan residue responsible for the fluorescence difference of the two conformations.  相似文献   

17.
The amino acid sequence of protein Gln3 in yeast Saccharomyces cerevisiae has a region enriched with Gln (Q) and Asn (N) residues. In this study, we analyzed the effects of overexpression of Gln3 and its Q/N-rich fragment fused with yellow fluorescent protein (YFP). Being overexpressed, full-length Gln3-YFP does not form aggregates, inhibits vegetative growth, and demonstrates nuclear localization, while the Q/N-rich fragment (Gln3QN) fused with YFP forms aggregates that do not colocalize with the nucleus and do not affect growth of the cells. Although detergent-resistant aggregates of Gln3QN are formed in the absence of yeast prions, the aggregation of Gln3QN significantly increases in the presence of [PIN+] prion, while in the presence of two prions, [PSI+] and [PIN+], the percentage of cells with Gln3QN aggregates is significantly lower than in the strain bearing only [PIN+]. Data on colocalization demonstrate that this effect is mediated by interaction between Gln3QN aggregates and [PSI+] and [PIN+] prions.  相似文献   

18.
CTnDOT integrase (IntDOT) is a member of the tyrosine family of site-specific DNA recombinases. IntDOT is unusual in that it catalyzes recombination between nonidentical sequences. Previous mutational analyses centered on mutants with substitutions of conserved residues in the catalytic (CAT) domain or residues predicted by homology modeling to be close to DNA in the core-binding (CB) domain. That work suggested that a conserved active-site residue (Arg I) of the CAT domain is missing and that some residues in the CB domain are involved in catalysis. Here we used a genetic approach and constructed an Escherichia coli indicator strain to screen for random mutations in IntDOT that disrupt integrative recombination in vivo. Twenty-five IntDOT mutants were isolated and characterized for DNA binding, DNA cleavage, and DNA ligation activities. We found that mutants with substitutions in the amino-terminal (N) domain were catalytically active but defective in forming nucleoprotein complexes, suggesting that they have altered protein-protein interactions or altered interactions with DNA. Replacement of Ala-352 of the CAT domain disrupted DNA cleavage but not DNA ligation, suggesting that Ala-352 may be important for positioning the catalytic tyrosine (Tyr-381) during cleavage. Interestingly, our biochemical data and homology modeling of the CAT domain suggest that Arg-285 is the missing Arg I residue of IntDOT. The predicted position of Arg-285 shows it entering the active site from a position on the polypeptide backbone that is not utilized in other tyrosine recombinases. IntDOT may therefore employ a novel active-site architecture to catalyze recombination.Conjugative transposons (CTns) are mobile DNA segments that use conjugation and site-specific recombination to transfer a copy of their DNA from a donor to a recipient strain. CTnDOT was originally discovered in a strain of Bacteroides thetaiotaomicron that was capable of transferring resistance to tetracycline and erythromycin (4, 35). Upon exposure to tetracycline, CTnDOT excises from the donor chromosome, copies its DNA by rolling-circle replication, and transfers its DNA to the recipient cell, where it circularizes and is integrated into the recipient chromosome by site-specific recombination. In the past 30 years, the frequency of tetracycline-resistant Bacteroides isolates has risen dramatically, to around 80% of isolates (35). Much of the spread of tetracycline resistance is due to the conjugative transposon CTnDOT and its close relatives (37).Previous work has shown that the integration and excision reactions require the CTnDOT-encoded integrase (IntDOT) and an uncharacterized Bacteroides host factor (8, 9, 30, 39). Analysis of the IntDOT amino acid sequence indicated that it was a member of the tyrosine recombinase family. It contains five of the six signature residues required for catalysis of the tyrosine recombination reactions (8, 30, 33). We previously constructed and characterized mutants containing alanine substitutions of residues in the catalytic (CAT) domain that are conserved among tyrosine recombinases. The results supported the inclusion of IntDOT within the tyrosine family of recombinases. However, the catalytic core seemed to have an organization somewhat different from those of other tyrosine recombinases (30). In addition, we used a homology modeling method to identify residues in the core-binding (CB) domain that are predicted to be near the DNA (29). The results of alanine substitutions of several residues indicated that some residues in the CB domain are likely involved in catalysis.The information-directed mutagenesis approaches that we used previously with IntDOT are useful for producing amino acid substitutions at positions predicted to be important for protein function on the basis of methods such as sequence analysis or homology modeling. Because IntDOT has an arm-binding (N) domain in the N terminus of the protein about which relatively little is known, and because the CAT domain appeared to have an unusual structure not found in other family members, the in vitro approach is limited in its ability to produce useful substitution mutations affecting the functions of these domains. In order to complement our earlier work, we chose to use a structure-function approach similar to one used previously with λ Int (21). The strategy we used was to isolate substitution mutants of IntDOT generated by random mutagenesis using an in vivo screen for recombination activity. This approach produced amino acid substitutions in all three of the domains of IntDOT. Analysis of the mutants has uncovered novel amino acid substitutions that cause defects in different steps in the recombination pathway, such as DNA binding, DNA cleavage, and DNA ligation.  相似文献   

19.
  • 1.1. The globin chain components of Sprague-Dawley rat hemoglobin were obtained by reverse-phase HPLC which showed the presence of two α-chain and four β-chains.
  • 2.2. The accurate molecular weight of each globin chain was determined by means of electrospray mass spectrometry. Extensive mass spectrometric analysis on several enzymatic digests by fast atom bombardment mass spectrometry (FAB-overlapping) meant to determine the complete sequence of the α-major and of the four β-globins.
  • 3.3. The primary structure of the α-major globin was found in agreement with literature data (Garrick et al., 1975 Biochem. J.149, 245–258; Chua et al., 1987).
  • 4.4. Sequence analysis of the four β -globin chains showed that amino acid differences are restricted to two protein portions: the region 22–25 and 123–125, the remaining portions of the molecule being unchanged in the four globins. Furthermore, all the amino acid replacements correspond to single point DNA mutations and (with the exception of the substitution Asp 22 → Asn in the β2-globin) involve uncharged substitutions.
  相似文献   

20.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号