首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNase autoantibodies (Abzs) can be found in the blood of patients with several autoimmune diseases, while the blood of healthy donors or patients with diseases with an insignificant disturbance of the immune status does not contain DNase Abzs. Here we present the first analysis of the DNase Abzs activity in the patients with tick-borne encephalitis (TBE). Several strict criteria have been applied to show that the DNase activity is an intrinsic property of IgGs from the sera of TBE patients but not from healthy donors. The relative activity of IgGs has been shown to vary extensively from patient to patient, but most of the preparations (91%) had detectable levels of the DNase activity. Polyclonal DNase IgGs were not active in the presence of EDTA or after a dialysis against EDTA, but could be activated by several externally added metal ions, with the level of activity decreasing in the order Mn2+ + Ca2+ ≥ Mn2++ Mg2+ ≥ Mn2+ ≥ Mg2+ + Ca2+ ≥ Co2+ ≥ Mg2+ > Ca2+, while K+, Na+, Ni2+, Zn2+, and Cu2+ did not stimulate DNA hydrolysis. Affinity chromatography on DNA-cellulose separated the DNase IgGs into many subfractions with various affinities for DNA and very different levels of the relative activity. Possible reasons for catalytic diversity of polyclonal human Abzs are discussed.  相似文献   

2.
Contrary to the exopectic acid transeliminase of Clostridium multifermentans, that of Erwinia sp. was activated strongly by Na+ and to a much less extent by Ca2+. K+ had a small stimulating effect on the enzyme activity. Mn2+ and Co2+, like Ca2+, activated the enzyme weakly. Ba2+ and Mg2+ showed no and a slight inhibitory effect, respectively, on the activity.

An almost total loss of activity was caused by the addition of EDTA to the reaction mixture. In the presence of Na+ the enzyme activity was restored by addition of divalent cations. Individual monovalent cations or each of the divalent cations was ineffective in restoring the activity.  相似文献   

3.
A fifteen minute incubation of spinach chloroplasts with the divalent Ca2+ chelator, EGTA, in concentrations 50–250 μM, inhibits electron transport through both photosystems. All photosystem II partial reactions, including indophenol, ferricyanide and the DCMU-insensitive silicomolybdate reduction are inhibited from 70–100%. The photosystem II donor reaction, diphenyl carbazide → indophenol, is also inhibited, indicating that the inhibition site comes after the Mn2+ site, and that the first Ca2+ effect noted (site II) is not on the water oxidation enzyme, as is commonly assumed, but between the Mn2+ site and plastoquinone A pool. The other photosystem II effect of EGTA (Ca2+ site I), occurs in the region between plastoquinone A and P700 in the electron transport chain of chloroplasts. About 50% inhibition of the reaction ascorbate + TMPD → methyl viologen is given by incubation with 200 μM EGTA for 15 min. Ca2+ site II activity can be restored with 20 mM CaCl2. Ca2+ site I responds to Ca2+ and plastocyanin added jointly. More than 90% activity in the ascorbate + TMPD → methylviologen reaction can be restored. Various ways in which Ca2+ ions could affect chloroplast structure and function are discussed. Since EGTA is more likely to penetrate chloroplast membranes than EDTA, which is known to remove CF1, the coupling factor, from chloroplast membranes, and since Mg2+ ions are ineffective in restoring activity, it is concluded that Ca2+ may function in the electron transport chain of chloroplasts in a hitherto unsuspected manner.  相似文献   

4.
The divalent cation requirements of NOS activity in bovine retina homogenate supernatant were investigated. Supernatants were assayed under standard conditions (in mM: EDTA 0.45, Ca2+ 0.25, Mg2+ 4.0). In order to investigate the enzyme's dependence on divalent cations, the tissue homogenate was depleted of di- and trivalent cations by passing it over a cation-exchange column (Chelex 100). Surprisingly, NOS activity was 50-100% higher in this preparation. However, addition of either EDTA (33 M) or EGTA (1 mM) almost fully inhibited NOS activity, suggesting a requirement for residual divalent metal cation(s). Phenanthroline or iminodiacetic acid at low concentrations had little effect on activity, suggesting no requirement for Fe2+, Zn2+ or Cu2+. Ca2+ had a moderate stimulatory effect, with an optimum activity around 0.01 mM. Mg2+ or Mn2+ had little effect at concentrations < 0.25 mM. However, in the presence of EDTA, Mn2+ or Ca2+ markedly stimulated NOS activity with the optimum at 0.1 mM. At high concentrations (> 0.1-0.2 mM), all divalent cations tested (Ba2+, Zn2+, Co2+, Mn2+, Mg2+, Ca2+), as well as La3+, dose-dependently inhibited NOS activity. We propose that retinal NOS requires low concentrations of naturally occurring divalent metal ions, most probably Ca2+, for optimal activity and is inhibited by high di- and trivalent metal concentrations, probably by competition with Ca2+.  相似文献   

5.
The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca2+, Mg2+, Mn2+, or Zn2+ were prepared, and their antioxidant potencies were compared. CS chelating with Ca2+ or Mg2+ ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H+ form. In contrast, CS chelating with Ca2+ or Mg2+ ion showed remarkably enhanced superoxide radical scavenging activity than CS of H+ or Na+ form. Moreover, CS chelating with divalent metal ions, Ca2+, Mg2+, Mn2+, or Zn2+, showed noticeably higher hydroxyl radical scavenging activity than CS of H+ or Na+ form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.  相似文献   

6.
An ammonium sulfate precipitation of fermentation broth produced by Bacillus subtilis FBL-1 resulted in 2.9-fold increase of specific protease activity. An eluted protein fraction from the column chromatographies using DEAE-Cellulose and Sephadex G-75 had 94.2- and 94.9-fold higher specific protease activity, respectively. An SDS-PAGE revealed a band of purified protease at approximately 37.6 kDa. Although purified protease showed the highest activity at 45°C and pH 9.0, the activity remained stable in temperature range from 30 to 50°C and pH range from 7.0 to 9.0. Protease activity was activated by metal ions such as Ca2+, Mg2+, Mn2+, Fe2+, Ca2+ and K+, but 10 mM Fe3+ significantly inhibited enzyme activity (53%). Protease activity was inhibited by 2 mM EDTA as a metalloprotease inhibitor, but it showed good stability against surfactants and organic solvents. The preferred substrates for protease activity were found to be casein (100%) and soybean flour (71.6%).  相似文献   

7.
1. Pyruvate kinase (ATP–pyruvate phosphotransferase, EC 2.7.1.40) from Ehrlich ascites-tumour cells was purified approximately fivefold by chromatography on DEAE-cellulose. The enzyme was shown to have an absolute requirement for one univalent and for one bivalent metal ion. 2. The univalent metal ion requirements were satisfied by K+, Rb+ or NH4+; Na+ and Cs+ were weak activators but Li+ was inactive. 3. Ca2+ exhibited `non-competitive' and `apparent competitive' effects in relation to the K+ activation. 4. The bivalent metal ion requirements were satisfied by Mg2+, Mn2+ or Co2+; Ba2+, Sr2+, Ca2+, Ni2+, Be2+ and Cu2+ were inactive. Mn2+ and Co2+ were better activators than Mg2+. 5. The bivalent metal ion requirements of purified pyruvate kinase from rabbit muscle were satisfied by Mg2+, Mn2+, Co2+ and to a smaller extent by Ni2+. Mn2+ and Co2+ were better activators than Mg2+. 6. Ca2+ competitively inhibited the activation by Mg2+, Mn2+ and Co2+ for both the tumour and rabbit enzymes. 7. It is concluded that there are no significant differences in metal ion specificity between the tumour and rabbit enzymes. 8. The possible role of metal ions in regulating enzymic and metabolic activities is considered further.  相似文献   

8.
《Cell calcium》2008,43(6):606-617
We have previously demonstrated a role for the reorganization of the actin cytoskeleton in store-operated calcium entry (SOCE) in human platelets and interpreted this as evidence for a de novo conformational coupling step in SOCE activation involving the type II IP3 receptor and the platelet hTRPC1-containing store-operated channel (SOC). Here, we present evidence challenging this model. The actin polymerization inhibitors cytochalasin D or latrunculin A significantly reduced Ca2+ but not Mn2+ or Na+ entry into thapsigargin (TG)-treated platelets. Jasplakinolide, which induces actin polymerization, also inhibited Ca2+ but not Mn2+ or Na+ entry. However, an anti-hTRPC1 antibody inhibited TG-evoked entry of all three cations, indicating that they all permeate an hTRPC1-containing store-operated channel (SOC). These results indicate that the reorganization of the actin cytoskeleton is not involved in SOC activation. The inhibitors of the Na+/Ca2+ exchanger (NCX), KB-R7943 or SN-6, caused a dose-dependent inhibition of Ca2+ but not Mn2+ or Na+ entry into TG-treated platelets. The effects of the NCX inhibitors were not additive with those of actin polymerization inhibitors, suggesting a common point of action. These results indicate a role for two Ca2+ permeable pathways activated following Ca2+ store depletion in human platelets: A Ca2+-permeable, hTRPC1-containing SOC and reverse Na+/Ca2+ exchange, which is activated following Na+ entry through the SOC and requires a functional actin cytoskeleton.  相似文献   

9.
Abstract: Using fura-2 microfluorometry, I investigated the mechanism by which non-N-methyl-d -aspartate (NMDA) receptor agonists increase the cytosolic free calcium concentration ([Ca]in) in single cerebellar Purkinje cells isolated from 3–10-day-old rats. Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate dose-dependently increased the cytosolic free Na+ concentration, which was measured using sodium-binding benzofuran isophthalate microfluorometry, confirming the Na+ influx through ion channels linked to non-NMDA receptors. The [Ca2+] increases induced by relatively lower concentrations of agonists were entirely dependent on external Ca2+ and were reduced by removal of external Na+ or by addition of a Ca2+ channel blocker, D600. The results indicate that the non-NMDA agonist–induced [Ca]in increase was due mainly to Ca2+ influx through voltage-dependent Ca2+ channels, which were activated by a massive Na+ influx. On the other hand, higher concentrations of agonists dose-dependently increased [Ca]in under conditions in which activation of voltage-dependent Ca2+ channels were blocked by a combination of Na+ removal with D600. These [Ca]in increases were Ca2+ dependent and little affected by adding a competitive NMDA antagonist. Non-NMDA agonists also stimulated influxes of Mn2+ and Co2+, both of which can be monitored by quenching fura-2 fluorescence under the same conditions. These results suggest that ion channels linked to non-NMDA receptors on immature Purkinje cells are permeable to Ca2+, Mn2+, and Co2+.  相似文献   

10.
Metal ion activation of saccharide binding has been studied for concana-valin A near pH 7.0. Although two metal ions, a transition metal ion and a Ca2+ ion, can bind, both are not required. Ca2+ alone, Mn2+ alone, or Ca2+ with other transition metal ions can activate this lectin. Only one Ca2+ ion per subunit or only one Mn2+ per subunit is sufficient. Metal ion binding was studied by magnetic resonance techniques and direct binding assays. Saccharide binding activity was monitored by following the fluorescence of 4-methylumbelliferyl a-D-mannopyranoside. When Ca2+ binds to demetalized concanavalin A, the transition metal ion site is hindered. When Mn2+ alone binds to demetalized concanavalin A, saccharide binding activity is induced. A subsequent conformational change, not necessary for carbohydrate binding activity, covers the Mn2+.  相似文献   

11.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

12.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

13.
Manganese (II) accumulation in human brain microvascular endothelial cells is mediated by the metal-ion transporters ZRT IRT-like protein 8 (ZIP8) and ZRT IRT-like protein 14 (ZIP14). The plasma membrane occupancy of ZIP14, in particular, is increased in cells treated with Mn2+, lipopolysaccharide, or IL-6, but the mechanism of this regulation has not been elucidated. The calcium-transporting type 2C member 1 ATPase, SPCA1, is a Golgi-localized Ca2+-uptake transporter thought to support Golgi uptake of Mn2+ also. Here, we show using surface protein biotinylation, indirect immunofluorescence, and GFP-tagged proteins that cytoplasmic Ca2+ regulates ZIP8- and ZIP14-mediated manganese accumulation in human brain microvascular endothelial cells by increasing the plasma membrane localization of these transporters. We demonstrate that RNAi knockdown of SPCA1 expression results in an increase in cytoplasmic Ca2+ levels. In turn, we found increased cytoplasmic Ca2+ enhances membrane-localized ZIP8 and ZIP14 and a subsequent increase in 54Mn2+ uptake. Furthermore, overexpression of WT SPCA1 or a gain-of-function mutant resulted in a decrease in cytoplasmic Ca2+ and 54Mn2+ accumulation. While addition of Ca2+ positively regulated ZIP-mediated 54Mn2+ uptake, we show chelation of Ca2+ diminished manganese transport. In conclusion, the modulation of ZIP8 and ZIP14 membrane cycling by cytoplasmic calcium is a novel finding and provides new insight into the regulation of the uptake of Mn2+ and other divalent metal ions–mediated ZIP metal transporters.  相似文献   

14.
It has been shown that removal of manganese from the water-oxidizing complex (WOC) of photosystem II (PSII) leads to flash-induced oxygen consumption (FIOC) which is activated by low concentration of Mn2+ (Yanykin et al., Biochim Biophys Acta 1797:516–523, 2010). In the present work, we examined the effect of transition and non-transition divalent metal ions on FIOC in Mn-depleted PSII (apo-WOC-PSII) preparations. It was shown that only Mn2+ ions are able to activate FIOC while other transition metal ions (Fe2+, V2+ and Cr2+) capable of electron donation to the apo-WOC-PSII suppressed the photoconsumption of O2. Co2+ ions with a high redox potential (E 0 for Co2+/Co3+ is 1.8 V) showed no effect. Non-transition metal ions Ca2+ by Mg2+ did not stimulate FIOC. However, Ca2+ (in contrast to Mg2+) showed an additional activation effect in the presence of exogenic Mn2+. The Ca2+ effect depended on the concentration of both Mn2+ and Ca2+. The Ca effect was only observed when: (1) the activation of FIOC induced by Mn2+ did not reach its maximum, (2) the concentration of Ca2+ did not exceed 40 μM; at higher concentrations Ca2+ inhibited the Mn2+-activated O2 photoconsumption. Replacement of Ca2+ by Mg2+ led to a suppression of Mn2+-activated O2 photoconsumption; while, addition of Ca2+ resulted in elimination of the Mg2+ inhibitory effect and activation of FIOC. Thus, only Mn2+ and Ca2+ (which are constituents of the WOC) have specific effects of activation of FIOC in apo-WOC-PSII preparations. Possible reactions involving Mn2+ and Ca2+ which could lead to the activation of FIOC in the apo-WOC-PSII are discussed.  相似文献   

15.
A new hypothesis describing the role of the redox inactive Ca2+ ion in the expression of physiological oxidative damage is described. The hypothesis is based on the optimization of the chelation characteristics of iron complexes for pro-oxidant activity. In a previous investigation it was found that an excess of ligand kinetically hindered the Fenton reaction activity of the FeII/IIIEDTA complex (Bobier et al. 2003). EDTA, citrate, NTA, and glutamate were selected as models for the coordination sites likely encountered by mobile iron, i.e. proteins. The optimal [EDTA]:[FeIII] ratio for Fenton reaction activity as measured by electrocatalytic voltammetry in a solution was found to be 1:1. An excess of EDTA in the amount of 10:1 [ligand]:[metal] suppresses the Fenton reaction activity to nearly the control. It is expected that the physiological coordination characteristics of mobile Fe would have a very large excess of [ligand]:[metal] and thus not be optimized for the Fenton reaction. Introduction of Ca2+ in to a ratio of 10:10:1 [Ca2+]:[EDTA]:[FeIII] to the system reinvigorated the Fenton reaction activity to nearly the value of the optimal 1:1 [EDTA]:[FeIII] complex. The pH distribution diagrams of Ca2+ in the presence of EDTA and FeII/III indicate that Ca2+ has the ability to uptake excess EDTA without displacing either FeII of FeIII from their respective complexed forms. The similarity in the presence for hard ligand sites albeit with a lower binding constant for Ca2+ accounts for this action.  相似文献   

16.
Sphingomyelinase (SMase) activity was measured in Entamoeba histolytica particulate and soluble subcellular fractions. The effects on SMase of incubation time, total protein concentration, pH, and several divalent cations were determined. SMase-C and other unidentified esterase activity were detected in soluble and particulate fractions. SMase-C was 94.5-96.0% higher than the unidentified esterase activity. Soluble and insoluble SMase-C specific activities increased with protein dose and incubation time. Soluble and insoluble SMase-C activities were maximum at pH 7.5 and were dependent on Mg2+, Mn2+, or Co2+, and inhibited by Zn2+, Hg2+, Ca2+, and EDTA. SMase-C was active in the pH range of 3-10 and its maximum activity was at pH 7.5. The soluble and insoluble SMases have remarkably similar physicochemical properties, strongly suggesting that E. histolytica has just one isoform of neutral SMase-C that had not been described before and might be essential for E. histolytica metabolism or virulence.  相似文献   

17.
Some experiments were carried out with purified neutral proteinases I and II of Aspergillus sojae in relation to their characteristics as metalloenzyme.

The both enzymes contained one gram atom of zinc and about two gram atoms of calcium per mole (molecular weights of 41,700 for I and 19,800 for II were estimated by gel filtration) of enzyme protein, and the zinc was essential for the activity. Some metal-chelating agents, such as ethylenediaminetetraacetic acid (EDTA), o-phenanthroline, 8-hydroxyquinoline and α,α′-dipyridyl, inhibited the activity of the both enzymes. In the inactivation of neutral proteinase II by EDTA a distinct pH-dependency was observed. The EDTA-inactivated enzymes were reactivated fully or partially by the addition of some metal ions such as Zn2+, Co2+, Mn2+, Cu2+ (only neutral proteinase II) and Ni2+. Zinc-free apo-enzymes were prepared from the native enzymes by the dialysis against EDTA solution. The apo-enzyme of neutral proteinase I still contained calcium, while that of neutral proteinase II did not. The apo-enzymes restored their activity for the most part either by the addition of excess amount of zinc or by mixing with a stoichiometric amount of zinc in the presence of calcium at an alkaline condition.  相似文献   

18.
We have characterized a Ca2+ current activated by depletion of intracellular Ca2+ stores (capacitative Ca2+ entry current) as a first step to investigate the mechanisms underlying communication between the intracellular Ca2+ stores and the plasma membrane Ca2+ permeability. Whole cell currents in response to voltage ramps from −125 to +60 mV from a holding potential of −40 mV were recorded in rat basophilic leukemia cells (RBL-1 cells) in solutions designed to optimize detection of a Ca2+ current. An inwardly rectifying current could be activated upon dialysis of the cell interior with pipette solutions devoid of Ca2+ and containing 20 mm BAPTA, a procedure expected to passively deplete intracellular Ca2+ stores. The current was maximally activated within 2 min, was sensitive to extracellular Ca2+ concentration and was abolished by removal of extracellular Ca2+. The current was markedly reduced in the presence of Ni2+ or La3+. The pathway activated by this protocol was permeant to Ba2+, displaying complex permeability characteristics at negative potentials. A small inward Mn2+ current consistent with a finite permeability of the pathway to Mn2+ was detected. In contrast Ni2+ displayed no detectable current carrying ability. Extracellular Na+ permeated the pathway in the absence of extracellular Ca2+. Under conditions designed to reduce passive depletion of intracellular Ca2+ stores, a Ca2+ current indistinguishable from that described above was activated by addition of ionomycin. This observation is consistent with the activation of the Ca2+ influx pathway occurring as a result of events associated with depletion of intracellular Ca2+ stores. Importantly, application of extracellular Ni2+ in the presence of ionomycin irreversibly inhibited the current. The presence of an inwardly rectifying K+ current in RBL cells could confound studies of the capacitative Ca2+ entry current when recorded using pipette solutions devoid of K+ since this current would be inward over the voltage range used to investigate the capacitative Ca2+ entry current. This study compares an inward rectifying K+ current and the capacitative Ca2+ entry current in RBL cells and highlights some similarities and differences between the two currents. The results demonstrate that caution should be exercised in interpreting recordings made using extracellular solutions containing even modest amounts of K+ when studying the capacitative Ca2+ entry current in RBL cells. Received: 12 September 1995/Revised: 18 June 1996  相似文献   

19.
Leech neurons exposed to salines containing inorganic Ca2+-channel blockers generate rhythmic bursts of impulses. According to an earlier model, these blockers unmask persistent Na+ currents that generate plateau-like depolarizations, each triggering a burst of impulses. The resulting increase in intracellular Na+ activates an outward Na+/K+ pump current that contributes to burst termination. We tested this model by examining systematically the effects of six transition metal ions (Co2+, Ni2+, Mn2+, Cd2+, La3+, and Zn2+) on the electrical activity of neurons in isolated leech ganglia. Each ion induced bursting activity, but the amplitude, form, and persistence of bursting differed with the ion used and its concentration relative to Ca2+. All ions tested suppressed chemical synaptic transmission between identified motor neurons, consistent with block of voltage-dependent Ca2+ currents in these cells. In addition, a strong correlation between suppression of synaptic transmission and burst amplitudes was obtained. Finally, burst duration was increased and the rate of repolarization decreased in reduced K+ saline, as expected for pump-dependent repolarization. These results provide further support for the hypothesis that a novel form of oscillatory electrical activity driven by persistent Na+ currents and the Na+/K+ pump occurs in leech ganglia exposed to Ca2+-channel blockers. Accepted: 15 May 1997  相似文献   

20.
It has been shown for the first time that polyclonal IgG abzymes (Abzs) with DNase activity from the sera of autoimmune‐prone MRL/MpJ‐lpr mice can be separated by isoelectric focusing into many subfractions having the isoelectric points (pI) from 4.5 to 9, with the maximal activity for Abzs with pI = 6.5–9.0. Affinity chromatography on DNA‐cellulose separated DNase IgGs into many subfractions demonstrating a range of affinities for DNA and different levels of the relative DNase activities (RDA) due to intrinsically bound metals and after addition of external Mg2+, Mn2+, Ca2+, and Mg2++Ca2+. Some fractions significantly increase RDAs in the presence of external ions (Mg2++Ca2+ > Mg2+ > Mn2+ > Ca2+), while each of this cofactor can also inhibit or have no influence on the RDAs of another fractions. It is known that complexes of DNA with histones and other proteins of apoptotic cells are the primary immunogens in systemic lupus erythematosus (SLE). Bovine serum albumin (BSA) and methylated BSA (mBSA) increase the RDAs of only some fractions, while have no effect or inhibit other IgG fractions. The ratio of the RDAs in the presence of all metal ions, BSA, and mBSA was individual for every abzyme fraction. Mn2+ and Ca2+ stimulated accumulation of only relaxed form of supercoiled DNA (scDNA) in the case of all subfractions, while in the presence of Mg2+ antibodies (Abs) of some subfractions (and in the presence of Mn2+ +Ca2+ all subfractions) produced relaxed DNA (rDNA) and linear DNA (linDNA) in a variable extent. The data obtained show that the polyclonal Abzs of mice may be a cocktail of Abs directly to DNA, RNA, and their complexes with proteins and anti‐idiotypic Abs to active centers of different nucleases. The diversity of the physicochemical and kinetic characteristics of the Abzs seems to be significantly widened when pre‐diseased mice spontaneously develop the disease. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号