首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

2.
The effect of B chromosomes on chromosome pairing at meiosis was investigated in the species hybrid Lolium temulentum x L. perenne at both the diploid and tetraploid level. The presence of B chromosomes drastically reduced association of homoeologous chromosomes in both the diploids and tetraploids. This was evident from the high frequency of univalents recorded in PMC's of diploid hybrids with B's and from the predominantly bivalent association of homologous chromosomes in tetraploids of this type. In the absence of B's homoeologous pairing was extensive giving a high frequency of bivalents in the diploids and multivalents as well as bivalents and univalents in the tetraploids.  相似文献   

3.
Every chromosome number from n = 12 to n =34 and also many higher numbers are known in one or more of the 130+ species of Echeveria, and the numerical boundary between diploids and tetraploids is not immediately apparent. Echeveria also is extraordinary for the number and diversity of hybrids that it can produce in cultivation, both within the genus and with species of several related genera. In 42 collections studied, the morphologically and cytologically variable E. secunda of central Mexico has n = 30-32, often with one or more B-chromosomes, and some quadrivalents are formed at meiosis in nearly every cell. Twenty-four hybrids of E. secunda, with 22 species or cytotypes considered diploids, resemble the former much more closely in appearance, and at meiosis 15-16 paired elements (bivalents and multivalents) are formed, never more, regardless of the number of chromosomes, 12 to 34, that were received from the other parent. It is concluded that the 15-16 paired elements in these hybrids are formed by the 30-32 chromosomes received from E. secunda, and that most chromosomes from the other parents occur as univalents, although usually a few associate with pairs from E. secunda to produce multivalents. Hybrids of E. secunda with 11 definitely tetraploid species having n = 34 to n = 68 are nicely intermediate in morphology between their parents, form mostly or entirely bivalents at meiosis, and most, probably all, including five intergeneric hybrids, are fertile. These observations are all consistent with the conclusion that E. secunda is an autotetraploid, even though no plants of the species having n = 15 or 16 have been found, and even though some other species of Echeveria having as many as 34 gametic chromosomes appear to be effectively diploid. Observations on pollen stainability and on second-generation hybrids are all compatible with this conclusion. The high chromosome numbers in many Mexican Crassulaceae that are now effectively diploid may have originated as polyploids that have become diploidized by mutation, loss, or suppression of duplicated chromosomes, segments, and genes. Hybrids of E. secunda, with three other species that appear to be tetraploids, have less regular meiosis, apparently because all of the chromosomes from the other parents do not regularly form pairs in the hybrids. These three species may represent intermediate stages in the processes of diploidization.  相似文献   

4.
Rutidosis leptorrhynchoides is an endangered plant endemic tosoutheastern Australia. Chromosome analysis of 19 of the 24known populations of the species has identified 17 differentchromosome variants or cytotypes. The most common cytotypesare a diploid and a tetraploid based on x = 11, and triploidand hexaploid plants with this basic number were also observed.Diploids, triploids and tetraploids based on a second basicnumber ofx = 13 were also seen. Plants with 2 n = 24 were shownto be hybrids between diploids with the two different basicnumbers. Meiotic chromosome pairing analysis of the plants with2n = 24 showed a maximum of two trivalents indicating the presenceof extra copies of one pair of large and one pair of small chromosomesin the 2 n = 26 plants. In addition, a number of different aneuploidsof the 2 n = 22 and 2 n = 44 races were found and many of thesealso showed structural chromosomal variation. The distributionof the two main chromosome races is disjunct with the tetraploidsconfined to southern Victoria. To avoid dysgenic effects, futurere-establishment efforts for this species should avoid mixingseed from different chromosome races. Copyright 2001 Annalsof Botany Company Aneuploidy, conservation genetics, karyotypes, meiosis, polyploidy  相似文献   

5.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

6.
An F1 hybrid (n=4x=28) between the tetraploid species Festuca arundinacea var. glaucescens (GGG′G′) and a synthetic tetraploid Lolium multiflorum (LmLmLmLm) was backcrossed to diploid L. multiflorum to produce triploid (2n=3x=21) BC1 hybrids (LmLmG). At metaphase I of meiosis the triploids had a preponderance of ring bivalents and univalents with some linear and frying-pan trivalents. Genomic in situ hybridisation (GISH) differentiated the Festuca chromosomes from Lolium and revealed that the bivalents were exclusively between Lolium homologues, while the univalents were Festuca. Despite the limited amount of homoeologous chiasmata pairing in the triploids, some recombinant chromosomes were recovered in the second backcross when the hybrids were further crossed to diploid L. multiflorum. The progeny from the second backcross was predominantly diploid. Genotypes with recombinant chromosomes and chromosome additions involving an extra Festuca chromosome were identified using GISH. Changes in plant phenotype were related to the presence of Festuca chromatin. Received: 20 September 2000 / Accepted: 05 January 2001  相似文献   

7.
The results of light and electron microscopic (EM) studies of meiosis in Microtus arvalis males of the karyoform “arvalis” (2n = 46, NFa = 80), in hybrids between the chromosomal forms arvalis and obscurus (2n = 46, NFa = 68), in M. rossiaemeridionalis voles (2n = 54, NFa = 54), and in a hybrid between the species M. rossiaemeridionalis and kermanensis (2n = 54, NFa = 54) are presented. SC (synaptonemal complex) karyotypes of the parental forms and the hybrids were constructed on the basis of measurements of the length of autosomal SCs revealed by the EM analysis in spermatocytes at the stage of middle pachytene. The SC karyotypes of M. arvalis and the hybrids ♀ obscurus × ♂ arvalis consist of 22 synaptonemal complexes of autosomal bivalents and the axial elements of the synaptonemal complexes of the sex chromosomes X and Y. The SC karyotypes of M. rossiaemeridionalis and the hybrid M. rossiaemeridionalis × M. kermanensis consist of 26 synaptonemal complexes of autosomal bivalents and a sex bivalent; they differ only in the length of the Y chromosome axis (Y chromosome in the hybrid was inherited from M. kermanensis). Asynaptic configurations of the autosomal SCs were not observed in the hybrids. The SC axial elements of the X and Y chromosomes in the parental forms and in the hybrids were located close to each other throughout pachytene, but they did not form a synaptic region. The normal synapsis in sterile hybrids (M. rossiaemeridionalis × M. kermanensis) and the behavior of the sex chromosomes in meiosis in fertile and sterile hybrids are discussed in the context of specific features of meiosis and reproductive isolation.  相似文献   

8.
Cytogenetic investigations have been made in the fourPetrorhagia species and hybrids of the sectionKohlrauschia. The three diploid species show close similarities in chromosome number, size and morphology, with the exception ofP. velutina, where one pair of metacentric chromosomes is represented by a pair of telocentrics. Meiotic studies in hybrids indicate close genomic homology between the diploid species and also between the two floral forms ofP. prolifera. The tetraploidP. nanteuilii behaves as an allotetraploid forming only bivalents at meiosis and results suggest thatP. velutina andP. prolifera are the diploid progenitors of this species. Since meiosis in diploid and triploid hybrids results in extensive intergenomic pairing it is concluded that the natural tetraploid has a bivalent promoting mechanism that prevents pairing between the genomes of its diploid progenitors.  相似文献   

9.
Verne Grant 《Chromosoma》1953,5(1):372-390
Summary Gilia millefoliata andG. achilleaefolia, two annual diploid (n=9) species ofPolemoniaceae, crossed readily in certain combinations but not in others. The F1 hybrids were vigorous but sterile. They gave rise, apparently by the union of unreduced gametes, to an F2 generation of tetraploids, which were mostly fertile.Chromosome pairing in the hybrids varied markedly according to the state of nutrition of the plants. The F1 hybrids formed fewer clear diakinesis figures, fewer bivalents, fewer chiasmata per bivalent, and more attenuated or stretched bivalents when grown in 2 pots of sand than when grown in rich soil (Table 3). A pot-bound allotetraploid individual derived from this hybrid showed the same meiotic irregularities as the starved F1s until irrigated with a solution of mineral nutrients, after which its chromosomes paired regularly in bivalents (Table 2, Fig. 38).The capacity of the F1 hybrids to produce polyploids also differed strikingly in the two cultures. The rate of polyploidy of the stunted sand-grown hybrids was 2381 viable tetraploid zygotes per million flowers, while the corresponding figure for the luxuriant field hybrids was only 2.7 per million flowers.For the production of polyploid progeny by diploid parents — a process which should be clearly distinguished from normal fertility — the termpolyploidy rate is proposed. It is suggested that starvation of a structural hybrid may sometimes increase its polyploidy rate by reducing chromosome pairing to the point where restitution nuclei and hence unreduced gametes can be formed.  相似文献   

10.
Kamemoto , H., and K. Shindo . (U. Hawaii, Honolulu.) Genome relationships in interspecific and intergeneric hybrids of Renanthera. Amer. Jour. Bot. 49(7): 737–748. Illus. 1962.—Chromosome numbers and meiotic behavior of species and hybrids of Renanthera (Orchidaceae) were investigated. Renanthera elongata, R. histrionica, R. matutina, R. monachica, and R. storiei were diploid (2n = 38). The race of R. coccinea commonly grown in Hawaii was found to be hexaploid (2n = 114), while a recently introduced clone from Thailand was diploid (2n = 38). Diploid interspecific hybrids formed about 18 bivalents at M-I, indicating a relatively strong homology of parental chromosomes. The tetraploid hybrid of diploid R. monachica and hexaploid R. coccinea showed predominantly 37 or 38 bivalents, indicating good homology of genomes of the 2 parental species, and autosyndetic pairing in the 2 additional genomes of R. coccinea. Intergeneric hybrids involving Renanthera spp. could be classified into 2 distinct groups: those with 14–11 bivalents that are generally oriented at the metaphase plate and eventually lead to a preponderance of tetrads or tetrads with microcytes, and those with fewer bivalents (9–5) many of which are unoriented pseudobivalents and which ultimately give rise to dyads and dyads with microcytes. Relationships of parental species on a taxonomic basis are closer in the former than the latter group.  相似文献   

11.
Common dallisgrass (Paspalum dilatatum) is an apomictic pentaploid (2n=5x=50) of hybrid origin with irregular meiosis and with the genome formula IIJJX. The I and J genomes are homologous to those of diploid P. intermedium and P. jurgensii, respectively, but the source of the X genome is unknown. Members of the X genome may have genes of special biological significance, including those controlling apomixis. Common dallisgrass was crossed with several diploid Paspalum species in an attempt to identify the source of the X genome. Since common dallisgrass is apomictic, all hybrids produced will be formed by fertilization of an unreduced egg (2n+n). Any hybrid showing 30 chromosome bivalents at meiosis would indicate that the male diploid parent has a chromosome set that is homologous to the X genome of dallisgrass. Over 36,000 spikelets of dallisgrass were emasculated and dusted with pollen of 15 different diploid species (diploid species bearing I or J genomes were excluded). Only five (P. chaseanum, P. equitans, P. fasciculatum, P. notatum, and P. simplex) produced 2n+n hybrids with P. dilatatum. Meiotic chromosome behavior was similar in all hexaploid hybrids showing ca. 20 bivalents and 20 univalents. Results indicated a very low rate of 2n+n hybridization; none of the five diploid species possessed the X genome. Because several diploid species failed to hybridize with 5x dallisgrass, other methods should be attempted. Molecular markers specific for the X genome may help solve the question.  相似文献   

12.
Menzel , Margaret Y. (Florida State U., Tallahassee), and James B. Pate . Chromosomes and crossing behavior of some species of Sansevieria. Amer. Jour. Bot. 47(3) : 230—238. Illus. 1960.–Approximately 20 species (28 clones) studied were diploids, tetraploids or hexaploids of the basic numbers x = 20; about 40% of the taxa were polyploid. All species had similar karyotypes, except for chromosome number. Five of 12 combinations of diploid species gave fertile F1 hybrids; 4 studied cytologically showed 20 bivalents at metaphase I. Two triploid interspecific hybrids showed high trivalent frequencies. In contrast, multivalent formation in polyploid species was variable but rather low. Morphological relationships appeared reticulate among and between diploids and polyploids and did not coincide with barriers to crossing or to hybrid fertility. The following tentative hypothesis concerning relationships in the genus is proposed: Sansevieria is monophyletic and speciation has proceeded through genetic variation and hybridization at the diploid level and by allopolyploidy (of the segmental type) ; a low level of chromosome differentiation has accompanied speciation such that complete pairing occurs in diploid hybrids, but considerable preferential pairing occurs in allopolyploids. The occurrence of both polyploid and hybrid vigor, the fertility of hybrids between species differing greatly in morphology and physiology, and the high potential for vegetative propagation make the genus a favorable subject for breeding based on interspecific hybridization.  相似文献   

13.
The 19 spatially distinct chromosomal units at first meiotic metaphase in sporophytically diploid species of Sphagnum have usually been considered to be bivalents, but one investigator (Sorsa, 1956) has interpreted them as chromosomes from dissociated bivalents and meiosis as post-reductional. The present studies on diploid S. squarrosum (Pers.) Crome establish the chromosome number on the basis of the following evidence: there are in addition to m-chromosomes, 19 pairs of chromosomes in early prophase, 19 bivalents at diakinesis, 19 chromosomes in each of the two sets at second metaphase, 19 daughter chromosomes in each of the four sets at late second anaphase, and 19 chromosomes in gametophytic mitoses. The 19 bodies at first meiotic metaphase in diploid species are true bivalents in loose secondary association, which has led to their erroneous interpretation as chromosomes of dissociated bivalents. The gametic chromosome number in sporophytically diploid Sphagnum is therefore, without doubt, n = 19, and this evidence negates the claim for post-reduction in Sphagnum.  相似文献   

14.
Grain Size and Seedling Growth of Wheat at Different Ploidy Levels   总被引:1,自引:0,他引:1  
A study was made of the influence of grain size variation withinand between diploid, tetraploid and hexaploid wheat, on a numberof seedling growth characters. Differences in grain size within the three ploidy levels appearedto be related to total photosynthetic area and dry weight accretionin the seedling. In the diploids there was a positive correlationbetween seed size and total photosynthetic area (r = +0·99,P < 0·01) and total dry weight (r = +0·84,P < 0·05) of the seedling at 10 weeks after emergence.In the tetraploid and hexaploids, seed size was negatively correlatedwith both total photosynthetic area (r = –0·69,P < 0·05 and r = –0·33, P < 0·05for the tetraploids and hexaploids respectively) and total dryweight (r = –0·69, P < 0·05 and r = –0·59,P < 0·05 for the tetraploids and hexaploids respectively),of the seedlings 10 weeks after emergence. The main physiological distinction between the tetraploids andhexaploids appeared to be the superiority of the hexaploidsin rate of leaf appearance and the lower ratio of expanded tounexpanded leaves in the seedling 10 weeks after emergence.The tetraploids, in turn, appeared to be superior to the diploidsin these two characters. Triticum spp., wheat, polyploidy, grain size, photosynthetic area, net assimilation rate, tiller number  相似文献   

15.
Detailed male meiosis, critical morphological observations and distribution pattern of diploid as well as tetraploid cytotypes of the Western Himalayan species, Bupleurum lanceolatum have been evaluated at present. A diploid (n = 8) cytotype is reported from Kashmir, whereas, both diploid (n = 8) and tetraploid (n = 16) cytotypes are available from two districts Kangra and Sirmaur of Himachal Pradesh. Out of these, the tetraploid cytotype makes new addition for the species on a worldwide basis. As per behavior, a tetraploid cytotype is characterized by abnormal meiosis leading to high pollen sterility and size variation of the pollen grains. Morphologically, tetraploids are noted to be luxuriant in comparison to the diploids.  相似文献   

16.
Summary The degree of preferential pairing of homologous chromosomes was estimated in a series of tetraploid hybrids of Lolium temulentum x Lolium perenne by means of cytological and genetic analyses. The correlations between the frequency of bivalents at first metaphase of meiosis in the hybrid tetraploids and the degree of preferential pairing calculated from the segregation pattern of isozyme alleles in a test cross was extremely high. The results showed clearly that suppression of heterogenetic pairing in these Lolium tetraploids is achieved by a genetic system involving the A chromosomes as well as the B chromosome system which has been known for some time. Certain similarities with the genetic system controlling pairing in polyploid wheats are discussed.  相似文献   

17.
Experimental hybrids involving the three diploid subspecies of Epilobium sect. Zauschneria formed 15 bivalents at meiotic metaphase I, as did experimental hybrids between the three other species of Epilobium (comprising sect. Cordylophorum) with n = 15. The gametic chromosome number of E. suffruticosum Nutt., n = 15, and its relationship to the other two species are reported for the first time. Although we have not obtained hybrids between the species of these two sections, their morphological similarities are impressive and they are surely closely related.  相似文献   

18.
P. B. Kirti  B. G. S. Rao 《Genetica》1982,59(2):127-131
S. integrifolium (2n = 24) can easily be crossed as the pistillate parent with S. melongena (2n = 24) and S. melongena var. insanum (2n = 24). However, crosses in the other direction do not succeed. Both hybrids are vigorous. Chromosome association at diakinesis and metaphase I was studied. Chromosome associations higher than bivalents were observed in the hybrids indicating structural repatterning of chromosomes. The modal chromosome association in hybrids was twelve bivalents per PMC. This is suggestive of the retention of ancestral chromosome homeologies by the taxa concerned. Despite regular meiosis both hybrids were highly pollen-sterile (about 95%), which was attributed to segregational events of the recombined chromosomes.  相似文献   

19.
Meiotic behaviors and reproductive modes of Japanese Isoetes were studied. The hexaploid (2n = 66) and the octaploid (2n = 88) of I. japonica consistently formed 33 and 44 bivalents, respectively, at diakinesis and/or metaphase I in both micro- and megaspore mother cells. The tetraploid (2n = 44) of I. sinensis formed 22 bivalents and its hexaploid made 33 bivalents in both types of spore mother cells. At diakinesis and/or metaphase I of microspore mother cells in I. asiatica with 2n = 22, 11 bivalents were detected. Because behaviors of meiosis in all cytotypes mentioned above were quite regular and plants yielded normal-appearing spores, they should reproduce sexually. Aneuploids of I. japonica with 2n = 87 formed 43 bivalents and one univalent, and I. sinensis with 2n = 65 formed 32 bivalents and one univalent in microspore mother cells. Meiosis of both cytotypes was almost regular and yielded microspores of normal appearance. In the heptaploid (2n = 77) of I. japonica, a configuration of 22 bivalents and 33 univalents was detected in micro- and megaspore mother cells, and various irregularities were observed throughout the meiotic divisions. Therefore, the genomic formula of the heptaploid is symbolized as AABBCDE, and the heptaploid is a sterile F, hybrid between the hexaploid (AABBCC) and the octaploid (AABBDDEE) of I. japonica. Since diploid and even-numbered polyploids regularly formed bivalents and odd-numbered ones displayed irregularities, allopolyploidy should act as a significant speciation mechanism in this genus.  相似文献   

20.
Root tip mitosis, meiosis, sporogeneses, and the development of gametophytes are described for eight populations of Allium textile Nels. & Macbr., native to Montana. The basic chromosome number is n = 7, with tetraploids being predominant. Of the eight populations studied, only one was composed entirely of diploids (2n = 14). Meiosis is generally normal with bivalents and tetravalents formed during the process. Laggard chromosomes leading to the formation of micronuclei are frequently observed during microsporogeny. The anther wall is five-layered and its development corresponds to the Monocotyledonous type. The tapetum is glandular and its cells remain uninucleate throughout microsporogeny. The adjacent anther locules coalesce before dehiscence. Pollen grains are shed at the three-celled stage. A stomium is organized. Ovules are anatropous, tenuinucellar and bitegminal. The archesporial cell develops directly into a megasporocyte. Development of the female gametophyte is bisporic and corresponds to the Allium type. These observations support Traub's classification (1975) on Allium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号