首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well recognized that acute strenuous exercise is accompanied by an increase in free-radical production and subsequent oxidative stress, in addition to changes in blood antioxidant status. Chronic exercise provides protection against exercise-induced oxidative stress by upregulating endogenous antioxidant defense systems. Little is known regarding the protective effect afforded by judo exercise. Therefore, we determined antioxidant and oxidative stress biomarkers at rest and in response to acute exercise in 10 competitive judokas and 10 sedentary subjects after mixed exercise (anaerobic followed by aerobic). The subjects performed a Wingate test, followed by 30 minutes of aerobic exercise performed at 60% of maximal aerobic power. Blood samples were taken, by an intravenous catheter, at rest (R), immediately after the physical exercise (P0), and at 5 (P5), 10 (P10), and 20 (P20) minutes postexercise. The measured parameters included the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase, in addition to α-tocopherol, and total antioxidant status. Malondialdehyde was measured as a representation of lipid peroxidation. At rest, the judokas had higher values for all antioxidant and oxidative stress markers as compared to the sedentary subjects (p < 0.05). Plasma concentrations of all parameters except for α-tocopherol increased significantly above resting values for both the judokas and sedentary subjects (p < 0.05) and remained elevated at 20 minutes postexercise. A significant postexercise decrease was observed for α-tocopherol (p < 0.05) at P20 for judokas and at P5 for sedentary subjects. These data indicate that competitive judo athletes have higher endogenous antioxidant protection compared to sedentary subjects. However, both groups of subjects experience an increase in exercise-induced oxidative stress that is not different.  相似文献   

2.
Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.  相似文献   

3.
The physiological significance of cardiac mitochondrial uncoupling protein 2 (UCP2)-mediated uncoupling respiration in exercise is unknown. In the current study, mitochondrial respiratory function, UCP2 mRNA level, UCP2-mediated respiration (UCR), and reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) activity were determined in rat heart with or without endurance training after an acute bout of exercise of different duration. In the untrained rats, state 4 respiration and UCR-independent respiration rates were progressively increased with exercise time and were 64 and 70% higher, respectively, than resting rate at 150 min, whereas UCR was elevated by 86% with no significant change in state 3 respiration. UCP2 mRNA level showed a 5- and 4-fold increase, respectively, after 45 and 90 min of exercise, but returned to resting level at 120 and 150 min. Mitochondrial ROS production and membrane potential (Deltapsi) increased progressively until 120 min, followed by a decrease to the resting level at 150 min. MnSOD mRNA abundance showed a 2-fold increase at 120 min but MnSOD activity did not change with exercise. Training significantly increased mitochondrial ATP synthetase activity, ADP to oxygen consumption (P/O) ratio, respiratory control ratio, and MnSOD activity, whereas exercise-induced state 4 respiration, UCR, ROS production, and Deltapsi were attenuated in the trained rats. We conclude that (1) UCP2 mRNA expression and activity in rat heart can be upregulated during prolonged exercise, which may reduce cross-membrane Deltapsi and thus ROS production; and (2) endurance training can blunt exercise-induced UCP2 and UCR, and improve mitochondrial efficiency of oxidative phosphorylation due to increased removal of ROS.  相似文献   

4.
Fluid shear stress modulates vascular production of endothelial superoxide anion (O2*-) and nitric oxide (*NO). Whether the characteristics of shear stress influence the spatial variations in mitochondrial manganese superoxide dismutase (Mn-SOD) expression in vasculatures is not well defined. We constructed a three-dimensional computational fluid dynamics model simulating spatial variations in shear stress at the arterial bifurcation. In parallel, explants of arterial bifurcations were sectioned from the human left main coronary bifurcation and right coronary arteries for immunohistolocalization of Mn-SOD expression. We demonstrated that Mn-SOD staining was prominent in the pulsatile shear stress (PSS)-exposed and atheroprotective regions, but it was nearly absent in the oscillatory shear stress (OSS)-exposed regions and lateral wall of arterial bifurcation. In cultured bovine aortic endothelial cells, PSS at mean shear stress (tau ave) of 23 dyn/cm2 upregulated Mn-SOD mRNA expression at a higher level than did OSS at tau ave = 0.02 dyn/cm2 +/- 3.0 dyn.cm(-2).s(-1) and at 1 Hz (PSS by 11.3 +/- 0.4-fold vs. OSS by 5.0 +/- 0.5-fold vs. static condition; P < 0.05, n = 4). By liquid chromatography and tandem mass spectrometry, it was found that PSS decreased the extent of low-density lipoprotein (LDL) nitration, whereas OSS increased nitration (P < 0.05, n = 4). In the presence of LDL, treatment with Mn-SOD small interfering RNA increased intracellular nitrotyrosine level (P < 0.5, n = 4), a fingerprint for nitrotyrosine formation. Our findings indicate that shear stress in the atheroprone versus atheroprotective regions regulates spatial variations in mitochondrial Mn-SOD expression with an implication for modulating LDL nitration.  相似文献   

5.
Controlled mechanical ventilation (MV) is a life-saving measure for patients in respiratory failure. However, MV renders the diaphragm inactive leading to diaphragm weakness due to both atrophy and contractile dysfunction. It is now established that oxidative stress is a requirement for MV-induced diaphragmatic proteolysis, atrophy, and contractile dysfunction to occur. Given that endurance exercise can elevate diaphragmatic antioxidant capacity and the levels of the cellular stress protein heat shock protein 72 (HSP72), we hypothesized that endurance exercise training before MV would protect the diaphragm against MV-induced oxidative stress, atrophy, and contractile dysfunction in female Sprague-Dawley rats. Our results confirm that endurance exercise training before MV increased both HSP72 and the antioxidant capacity in the diaphragm. Importantly, compared with sedentary animals, exercise training before MV protected the diaphragm against MV-induced oxidative damage, protease activation, myofiber atrophy, and contractile dysfunction. Further, exercise protected diaphragm mitochondria against MV-induced oxidative damage and uncoupling of oxidative phosphorylation. These results provide the first evidence that exercise can provide protection against MV-induced diaphragm weakness. These findings are important and establish the need for future experiments to determine the mechanism(s) responsible for exercise-induced diaphragm protection.  相似文献   

6.
We examined a suitable swim program of different intensities and durations that could evoke changes in the myocardial antioxidant capacity in 22-month-old rats. Male rats (Rattus norvegicus) were assigned to either a sedentary control (SE-C) group or one of six trainee groups. Animals were swim-exercised for 4 weeks with either 20 min or 40 min/day, and three intensities, low, moderate and high. Low-intensity at 20 min/day elicited maximum swim velocity (Sv) and endurance capacity (P<0.05). While serum total cholesterol, triglyceride and low-density lipoprotein (LDL-C) levels were significantly reduced, high-density lipoprotein (HDL-C) showed an increase (P<0.05) in low-intensity trained rats (20 min/day) over SE-C. Notable reduction in blood lactate was also evident. Exercise training significantly increased superoxide dismutase (Mn-SOD), decreased lipid peroxidation products, malondialdehyde and lipofuscin in the left and right ventricles. Increased Mn-SOD with concomitant decrease in lipofuscin in left ventricle was significantly greater than in right ventricle. Moderate- to high-intensity exercise was not effective in either reducing lipid peroxidation products or elevating Mn-SOD activity. These data suggest that swim training at low-intensity of 20 min/day is beneficial as a major protective adaptation against oxidative stress in old myocardium.  相似文献   

7.
Given the potential of reactive oxygen species to damage intracellular proteins during subsequent bouts of muscle contractions, it was suggested that, when this production exceeds the antioxidant capacity, the preexisting antioxidant pathways may be complemented by the synthesis of the defense mechanism represented by heat shock proteins (HSPs), stress proteins with the function of repair and maintaining protein folding. To test this hypothesis, we analyzed reactive carbonyl derivatives in plasma and the expression of HSP72 and activities of enzymes from the oxidative and antioxidant defense systems in the soleus muscle of sedentary rats and rats trained by two protocols: continuous and intermittent. We analyzed all three groups at rest and 2 h after acute exercise. After 8 wk of training, the animals from both groups clearly demonstrated higher resistance to exercise. Both trained groups showed significantly higher citrate synthase, catalase, and glutathione reductase activities than the control group (P < 0.01). After acute exercise, catalase and glutathione reductase activities significantly decreased (P < 0.01) and plasma reactive carbonyl derivatives significantly increased (P < 0.05) in the sedentary group, suggesting an oxidative-stress condition as responsible for exhaustion in this group. Finally, after acute exercise, the induction of HSP72 expression occurred only in the sedentary group, suggesting that HSP72 acts as a complementary protective mechanism in exercise-induced oxidative stress.  相似文献   

8.
To compare the effects of ionising radiation on leukocytes from breast cancer patients and healthy subjects ex vivo, the level of NF-kappaB and the antioxidant enzymes manganese-containing superoxide dismutase (Mn-SOD), copper/zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) in combination with flow cytometric analysis of CD4+ lymphocytes was performed. The level of Mn-SOD protein was significantly increased in the breast cancer study group both before (P < 0.001) and after (P < 0.001) irradiation when compared with healthy subjects. Measurements in parallel indicated that the level of CAT protein was significantly higher in the breast cancer study group after irradiation (2 Gy [P < 0.001] and 9 Gy [P < 0.05]) when compared with healthy subjects. Although the initial number of lymphocytes in the blood of breast cancer patients was not different from healthy subjects, the percentage of apoptotic CD4+ cells was significantly (P < 0.001) lower both before and after irradiation indicating that cell culture conditions induced radioresistance of CD4+ cells in the blood of breast cancer patients. The data presented in this current study indicate that brief ex vivo culture of peripheral blood leukocytes potentiates oxidative stress imposed by a breast cancer tumour.  相似文献   

9.
In mammals, disulfide isomerase associated 3, PDIA3, is a member of the endoplasmic reticulum (ER) stress proteins, which can be induced by oxidative stress; however, its role in relation to stress regulation is still unknown in fish. Here, we report the cloning of a coding region of PDIA3 from the Atlantic salmon. PDIA3 mRNA expression was evaluated in the liver of Atlantic salmon exposed to environmental hyperoxia stress and toxic perfluorooctane sulfonate (PFOS) exposure stress. The PDIA3 sequence contained two PDI-typical thioredoxin active sites of WCGHC and shared approximately 70% identity with mammalian PDIA3, and its mRNA was primarily expressed in the liver. PDIA3 was significantly increased in the liver of Atlantic salmon exposed to hyperoxic water during smoltification. Also Mn superoxide dismutase (Mn-SOD) and CCAAT/enhancer binding protein (C/EBP), other markers of oxidative stress, were upregulated by hyperoxia. Furthermore, PFOS exposure of hepatocytes resulted in elevated mRNA expression of PDIA3, Mn-SOD and C/EBPδ as well as peroxisome proliferator-activated receptor gamma (PPARγ). These results indicate a signaling connection between oxidative stress and ER stress. PDIA3 and C/EBPδ may be valuable markers in fish for exposure and effect to environmental stress.  相似文献   

10.
目的:观察有氧运动和褪黑素对Ⅱ型糖尿病大鼠骨质疏松的影响。方法:6周龄的成年雌性SD大鼠60只,随机分为安静对照组(N组)10只和Ⅱ型糖尿病模型组50只,N组大鼠不加任何干预,Ⅱ型糖尿病模型组大鼠一次性腹腔注射35 mg/kg链脲佐菌素(STZ),1周后检测大鼠血糖大于16.7 mmol/L为Ⅱ型糖尿病造模成功,将40只成模大鼠随机分为糖尿病对照组(D)、糖尿病+有氧运动组(DE)、糖尿病+褪黑素组(DM)、糖尿病+有氧运动+褪黑素组(DEM),每组10只;DE组和DEM组大鼠采用20 min的递增负荷的方式进行跑台有氧运动,训练持续6周,DM组和DEM组大鼠每天灌胃40 mg/kg褪黑素,观察各组大鼠体重、脊椎骨以及左右股骨骨密度(BMD)、观察大鼠血糖、血清丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、血清总钙(Ca)、无机磷(P)和甲状旁腺素(PTH)的变化。结果:与N组相比,D组大鼠体重、血清SOD、GSH-Px水平、血Ca、腰椎和左右股骨BMD显著降低(P < 0.05,P < 0.01),血糖、血清MDA和血PTH水平显著升高(P < 0.01),血P无明显变化(P > 0.05);与D组比较,DE组、DM组大鼠大鼠体重、血清SOD、GSH-Px水平、血Ca、腰椎和左右股骨BMD显著升高(P < 0.05,P <0.01),血糖、血清MDA和血PTH水平显著降低(P < 0.05,P < 0.01),血P无明显变化(P > 0.05),有氧运动和褪黑素同时干预效果更好。结论:有氧运动和褪黑素均能改善糖尿病骨质疏松,且两者联合干预的效果更加显著,其可能与通过提高糖尿病大鼠的抗氧化应激能力,调节糖的代谢从而有效地降低血钙和PTH,改善BMD来缓解骨质疏松有关。  相似文献   

11.
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and antioxidant defense in rat skeletal muscle during and after an acute bout of prolonged exercise. UCP3 mRNA expression was elevated sharply at 45 min of exercise, reaching 7- to 8-fold above resting level at 150 min. The increase in UCP3 protein content showed a latent response but was elevated approximately 1.9-fold at 120 min of exercise. Both UCP3 mRNA and UCP3 protein gradually returned to resting levels 24 h postexercise. Mitochondrial ROS production was progressively increased during exercise. However, ROS showed a dramatic drop at 150 min although their levels remained severalfold higher during the recovery. Mitochondrial State 4 respiration rate was increased by 46 and 58% (p < 0.05) at 90 and 120 min, respectively, but returned to resting rate at 150 min, when State 3 respiration and respiratory control index (RCI) were suppressed. ADP-to-oxygen consumption (P/O) ratio and ATP synthase activity were lowered at 3 h postexercise, whereas proton motive force and mitochondrial malondialdehyde content were unchanged. Manganese superoxide dismutase gene expression was not affected by exercise except for an increase in mRNA abundance at 3 h postexercise. These data demonstrate that UCP3 expression in rat skeletal muscle can be rapidly upregulated during prolonged exercise, possibly owing to increased ROS generation. Increased UCP3 may partially alleviate the proton gradient across the inner membrane, thereby reducing further ROS production by the electron transport chain. However, prolonged exercise caused a decrease in energy coupling efficiency in muscle mitochondria revealed by an increased respiration rate due to proton leak (State 4/State 3 ratio) and decreased RCI. We thus propose that the compromise of the oxidative phosphorylation efficiency due to UCP3 upregulation may serve an antioxidant function to protect the muscle mitochondria from exercise-induced oxidative stress  相似文献   

12.
The effects of endurance training on lactate transport capacity remain controversial. This study examined whether endurance training 1) alters lactate transport capacity, 2) can protect against exhaustive exercise-induced lactate transport alteration, and 3) can modify heart and oxidative muscle monocarboxylate transporter 1 (MCT1) content. Forty male Wistar rats were divided into control (C), trained (T), exhaustively exercised (E), and trained and exercised (TE) groups. Rats in the T and TE groups ran on a treadmill (1 h/day, 5 days/wk at 25 m/min, 10% incline) for 5 wk; C and E were familiarized with the exercise task for 5 min/day. Before being killed, E and TE rats underwent exhaustive exercise (25 m/min, 10% grade), which lasted 80 and 204 min, respectively (P < 0.05). Although lactate transport measurements (zero-trans) did not differ between groups C and T, both E and TE groups presented an apparent loss of protein saturation properties. In the trained groups, MCT1 content increased in soleus (+28% for T and +26% for TE; P < 0.05) and heart muscle (+36% for T and +33% for TE; P < 0.05). Moreover, despite the metabolic adaptations typically observed after endurance training, we also noted increased lipid peroxidation byproducts after exhaustive exercise. We concluded that 1) endurance training does not alter lactate transport capacity, 2) exhaustive exercise-induced lactate transport alteration is not prevented by training despite increased MCT1 content, and 3) exercise-induced oxidative stress may enhance the passive diffusion responsible for the apparent loss of saturation properties, possibly masking lactate transport regulation.  相似文献   

13.
It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.  相似文献   

14.
Both regular physical exercise and low levels of H(2)O(2) administration result in increased resistance to oxidative stress. We measured the accumulation of reactive carbonyl derivatives and the activities of proteasome complex and DT-diaphorase in cardiac muscle of trained and untrained rats after chronic i.p. administration of 1 ml t-butyl H(2)O(2) (1 mmol/kg for 3 weeks every second day). Twenty-four rats were randomly assigned to a control group administered with saline, control administered with H(2)O(2), and exercised administered either saline or H(2)O(2). The activity of DT-diaphorase significantly increased in H(2)O(2) administered and exercised groups, indicating that an increase in H(2)O(2) levels stimulate the activity of this enzyme. The cardiac muscle of H(2)O(2) administered nonexercised animals accumulated significantly more carbonyl than control group (P < 0.05). The exercise and H(2)O(2) administration resulted in less oxidatively modified protein than found in nonexercised groups (P < 0.05). The peptide-like activity of proteasome complex was induced by the treatment of H(2)O(2) and exercise and exercise potentiate the effect of H(2)O(2). On the other hand, the chymotrypsin-like and trypsin-like activities were stimulated only by physical training and H(2)O(2) administration. The data suggest that chronic administration of H(2)O(2) after exercise training decreases the accumulation of carbonyl groups below the steady-state level and induces the activity of proteasome and DT-diaphorase. Hence, the stimulating effect of physical exercise on free radical generation is an important phenomenon of the exercise-induced adaptation process since it increases resistance to oxidative stress. Regular exercise training is a valuable physiological means of preconditioning the myocardium to prolonged oxidative stress.  相似文献   

15.
In this study, we evaluated the hypothesis that long term dietary restriction would have beneficial effects on the oxidative stress and antioxidant enzyme systems in liver, heart and kidney in adult male rats undergoing different intensities of swimming exercise. Sixty male, Sprague-Dawley rats were assigned as either dietary restricted on every other week day (DR) or fed ad libitum (AL) groups, and each group was further subdivided into sedentary, endurance swimming exercise training (submaximal exercise) and exhaustive swimming exercise (maximal exercise) groups. Animals in the submaximal exercise group swam 5 days/week for 8 weeks, while maximal exercise was performed as an acute bout of exercise. In parallel with the increase in the intensity of the exercise, the degree of lipid peroxidation and protein oxidation were increased in both the DR and AL groups; however the rate of increase was lower in the DR group. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) enzyme activities were lower in the DR group than in the AL group. In parallel with the increase in exercise intensity, GSH and GR enzyme activities decreased, whereas an increase was observed in GSH-Px enzyme activity. In conclusion, the comparison between the DR and AL groups with the three swimming exercise conditions shows that the DR group is greatly protected against different swimming exercise-induced oxidative stress compared with the AL group.  相似文献   

16.
Endurance exercise training promotes a small but significant increase in antioxidant enzyme activity in the costal diaphragm (DIA) of rodents. It is unclear if these training-induced improvements in muscle antioxidant capacity are large enough to reduce oxidative stress during prolonged contractile activity. To test the hypothesis that training-related increases in DIA antioxidant capacity reduces contraction-induced lipid peroxidation, we exercise trained adult female Sprague-Dawley (n = 7) rats on a motor-driven treadmill for 12 weeks at approximately 75% maximal O2 consumption (90 min/day). Control animals (n = 8) remained sedentary during the same 12-week period. After training, DIA strips from animals in both experimental groups were excised and subjected to an in vitro fatigue contractile protocol in which the muscle was stimulated for 60 min at a frequency of 30 Hz, every 2 s, with a train duration of 330 m. Compared to the controls, endurance training resulted in an increase (P < 0.05) in diaphragmatic non-protein thiols and in the activity of the antioxidant enzyme superoxide dismutase. Following the contractile protocol, lipid peroxidation was significantly lower (P < 0.05) in the trained DIA compared to the controls. These data support the hypothesis that endurance exercise training-induced increases in DIA antioxidant capacity protect the muscle against contractile-related oxidative stress.  相似文献   

17.
目的:探讨替米沙坦及吡哆胺对自发性高血压大鼠脑组织氧化应激的影响。方法:自发性高血压大鼠24只随机分为4组(n=6):高血压对照组(HC组);替米沙坦组(T组);吡哆胺组(P组);联合治疗组(TP组)。同龄WKY大鼠作为正常对照组(NC组)。药物干预16周,测定各组脑组织中丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶p47phox mRNA表达。结果:与NC组比较,HC组脑组织中MDA含量明显升高、SOD活性明显减低(P<0.05);与HC组比较T组、P组、TP组MDA含量明显减低,SOD活性明显升高(P<0.05);与NC组比较HC组(NADPH)氧化酶p47phox mRNA表达显著上调(P<0.01);与HC组比较T组、TP组NADPH氧化酶p47phox mRNA表达明显下调(P<0.01);HC组与P组比较NADPH氧化酶p47phox mRNA表达无统计学差异(P>0.05)。结论:自发性高血压大鼠脑组织处于氧化应激状态,替米沙坦及吡哆胺可抑制自发性高血压大鼠脑组织的氧化应激水平,联合治疗并不优于替米沙坦单药治疗。  相似文献   

18.
Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox.  相似文献   

19.
17β-estradiol (E2) attenuates exercise-induced muscle damage and inflammation in some models. Eighteen men completed 150 eccentric contractions after random assignment to placebo (Control group) or E2 supplementation (Experimental group). Muscle biopsies and blood samples were collected at baseline, following 8-day supplementation and 3 h and 48 h after exercise. Blood samples were analyzed for sex hormone concentration, creatine kinase (CK) activity and total antioxidant capacity. The mRNA content of genes involved in lipid and cholesterol homeostasis [forkhead box O1 (FOXO1), caveolin 1, and sterol regulatory element binding protein-2 (SREBP2)] and antioxidant defense (SOD1 and -2) were measured by RT-PCR. Immunohistochemistry was used to quantify muscle neutrophil (myeloperoxidase) and macrophage (CD68) content. Serum E2 concentration increased 2.5-fold with supplementation (P < 0.001), attenuating neutrophil infiltration at 3 h (P < 0.05) and 48 h (P < 0.001), and the induction of SOD1 at 48 h (P = 0.02). Macrophage density at 48 h (P < 0.05) and SOD2 mRNA at 3 h (P = 0.01) increased but were not affected by E2. Serum CK activity was higher at 48 h for both groups (P < 0.05). FOXO1, caveolin 1 and SREBP2 expression were 2.8-fold (P < 0.05), 1.4-fold (P < 0.05), and 1.5-fold (P < 0.001) and higher at 3 h after exercise with no effect of E2. This suggests that E2 attenuates neutrophil infiltration; however, the mechanism does not appear to be lesser oxidative stress or membrane damage and may indicate lesser neutrophil/endothelial interaction.  相似文献   

20.
目的: 观察大鼠在一次性力竭运动后肾脏裂孔膜蛋白的表达水平,探究PKC抑制剂对其蛋白表达水平的影响,揭示PKC在运动性蛋白尿形成中的作用机制。方法: SD雄性大鼠30只随机分为对照组(C)、运动组(E)、运动联合PKC抑制剂组(EPI),每组10只。E组和EPI组大鼠分别进行一次性跑台力竭运动(25 m/min),EPI组大鼠运动前1 d及1 h腹腔注射PKC抑制剂白屈菜红碱(chelerythrine,5 mg/kg),C组和E组注射相应体积的生理盐水。运动后即刻麻醉后,取血液、尿液及肾脏组织,使用化学比色法检测尿蛋白、尿酸、尿糖、血尿素、血尿酸、血糖水平,使用荧光探针法检测肾脏ROS水平,使用Western blot法检测肾脏PKC、Nox2、Nox4、nephrin、podocin蛋白表达。结果: ①与C组相比,E组尿蛋白、尿酸、尿糖、血尿素、血尿酸显著增多(P<0.05),血糖显著减少(P<0.01),肾脏ROS生成显著增多(P<0.01),肾脏nephrin、podocin蛋白表达明显降低(P<0.05),PKC、Nox2、Nox4蛋白表达明显增多(P<0.05);②与E组比,EPI组尿蛋白、尿糖、血尿素显著减少(P<0.05),血糖显著增加(P< 0.01),肾脏ROS生成显著降低(P<0.01),EPI组肾组织中nephrin、podocin蛋白表达明显增加(P<0.05),PKC、Nox2蛋白表达明显降低(P<0.05)。结论: 一次性力竭运动通过PKC/NOX/ROS途径使大鼠肾脏裂孔膜蛋白nephrin、podocin表达下调;PKC抑制剂缓解力竭运动导致的肾脏裂孔膜蛋白表达下降,预防运动性蛋白尿的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号