首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a simple and rapid protocol for determination of baculovirus titers based on increasing viable insect cell size/diameter following virus infection is presented. There are different methods available for determining virus titers such as plaque assays end-point dilution, quantitative real-time polymerase chain reaction and flow cytometry. However, most of these methods are time consuming and labor intensive. The titer estimation method presented here can be completed in approximately 28 h from start to finish. In this method, the Vi-CELL (Beckman Coulter) was used to measure cell diameter change over a range of virus dilutions, following infection. The cell diameter change data were used to compute the virus titer using a statistical method called the method of moments that we have described previously.  相似文献   

2.
Determination of the baculovirus transducing titer in mammalian cells   总被引:1,自引:0,他引:1  
Baculovirus has emerged as a promising vector for in vivo or ex vivo gene therapy. To date, the infectious titer and multiplicity of infection (MOI) based on the ability of baculovirus to infect insect cells are commonly adopted to indicate the virus dosage. However, the infectious titer and MOI do not reliably represent the baculovirus transducing ability, making the comparison of baculovirus-mediated gene transfer difficult. To determine the baculovirus transducing ability more rapidly and reliably, we developed a protocol to evaluate the transducing titers of baculovirus stocks. The virus was diluted twofold serially and used to transduce HeLa cells. The resultant transduction efficiencies were measured by flow cytometry for the calculation of transducing titers. Compared to the infectious titer, the determination of transducing titer is more reproducible as the standard deviations among measurements are smaller. Also, the transducing titers can be obtained in 24 h, which is significantly faster as opposed to 4-7 days to obtain the infectious titer. More importantly, we demonstrated that baculoviruses with higher transducing titers could transduce cells at higher efficiency and yield stronger and longer transgene expression, confirming that the transducing titer was representative of the baculovirus transducing ability. This finding is particularly significant for ex vivo gene delivery whereby unconcentrated viruses are used for transduction and long-term transgene expression is desired. In this regard, our titration protocol provides a simple, fast, and reliable measure to evaluate the quality of virus stocks during virus production and purification, and is helpful to predict the performance of vector supernatants and ensure reproducible gene delivery experiments.  相似文献   

3.
目的:建立一种基于半数组织培养感染剂量(median tissue culture infective dose,TCID50)检测9型腺相关病毒(adeno-associated virus type 9,AAV9)载体制品感染性滴度的方法。方法:利用含AAV2 repcap基因的1型单纯疱疹病毒(herpes simplex virus type1,HSV1)做为辅助病毒与梯度稀释的AAV9载体制品共同感染HEK-293细胞,培养48 h后用实时荧光定量PCR(quantitative real-time PCR,qPCR)扩增AAV特异性反向末端重复序列(inverted terminal repeats,ITR),根据阳性及阴性感染孔数,利用Kärber法计算样品的TCID50。结果:采用携带增强绿色荧光蛋白报告基因的AAV9载体制品确定辅助病毒HSV1-rc最佳感染复数(multiplicity of infection,MOI)为5,AAV9-101的感染性滴度为1.6×109 TCID50/mL。结论:对AAV9载体制品进行感染性滴度检测,且具有可重复性。  相似文献   

4.
The baculovirus expression system has been used to produce large amounts of biologically active proteins by infecting insect cells with a recombinant baculovirus expressing the target protein. For an efficient expression of the target protein, it is necessary to infect insect cells with an adequate amount of virus. However, current methods are time-consuming and either have technical difficulties or are limited as a result of virus expression mechanism using a reporter gene. A novel method is developed to yield virus titers in 10 h that is easy to perform using 96-well plates and applicable to both any Autographa californica nucleopolyhyderovirus (AcNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV)-based recombinant baculovirus. This assay uses an antibody to a DNA-binding protein to detect the infected cells via immunostaining. The titer is determined by counting foci produced as a result of infection of the virus under a fluorescent microscope. The required incubation period was shortened considerably because infected cells expressed viral antigens at the post-infection time of 4 h. Therefore, 10 h was enough to estimate the virus titer including virus infection time, insect cell culture, and estimation of virus titer. Titers determined using this immunological assay are comparable, both in value and validity, to those obtained using a traditional method, provided that the stocks have titers above 10(3) pfu/mL.  相似文献   

5.
We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.  相似文献   

6.
White spot syndrome virus (WSSV) is a devastating pathogen in shrimp aquaculture. Standardized challenge procedures using a known amount of infectious virus would assist in evaluating strategies to reduce its impact. In this study, the shrimp infectious dose 50% endpoint (SID50 ml(-1)) of a Thai isolate of WSSV was determined by intramuscular inoculation (i.m.) in 60 and 135 d old specific pathogen-free (SPF) Litopenaeus vannamei using indirect immunofluorescence (IIF) and 1-step polymerase chain reaction (PCR). Also, the lethal dose 50% endpoint (LD50 ml(-1)) was determined from the proportion of dead shrimp. The median virus infection titers in 60 and 135 d old juveniles were 10(6.8) and 10(6.5) SID50 ml(-1), respectively. These titers were not significantly different (p > or = 0.05). The titration of the WSSV stock by oral intubation in 80 d old juveniles resulted in approximately 10-fold reduction in virus titer compared to i.m. inoculation. This lower titer is probably the result of physical and chemical barriers in the digestive tract of shrimp that hinder WSSV infectivity. The titers determined by infection were identical to the titers determined by mortality in all experiments using both i.m. and oral routes at 120 h post inoculation (hpi), indicating that every infected shrimp died. The determination of WSSV titers for dilutions administered by i.m. and oral routes constitutes the first step towards the standardization of challenge procedures to evaluate strategies to reduce WSSV infection.  相似文献   

7.
An immunological assay for determination of baculovirus titers in 48 hours   总被引:2,自引:0,他引:2  
Th baculovirus expression system is a system of choice for expressing eukaryotic proteins. Large amounts of biologically active material can be generated using this system by infecting insect cells with a baculovirus expressing the target protein. At several stages during the production of a baculovirus stock, it is necessary to titer the virus. Current methods have long time lines and are either technically difficult or are limited to viruses expressing a reporter gene. The new assay described here yields titers in 48 h, is easy to perform using 96-well plates, and is applicable to any Autographa californica nucleopolyhedrovirus-based recombinant baculovirus. This assay uses an antibody to a viral envelope glycoprotein to detect infected cells via immunostaining. The titer is determined by counting foci of infection under a light microscope. The required incubation period is shortened considerably because infected cells express viral antigens long before the macroscopic signs of infection scored in other assays become apparent. Titers determined using this immunological assay are comparable, both in value and variability, to those obtained using a traditional method, provided that the stocks have titers above 10(4) pfu/ml.  相似文献   

8.
A real-time PCR method was developed to detect monodon baculovirus (MBV) in penaeid shrimp. A pair of MBV primers to amplify a 135 bp DNA fragment and a TaqMan probe were developed. The primers and TaqMan probe were specific for MBV and did not cross react with Hepatopancreatic parvovirus (HPV), White spot syndrome virus (WSSV), Infectious hypodermal and haematopoietic virus (IHHNV) and specific pathogen free (SPF) shrimp DNA. A plasmid (pMBV) containing the target MBV sequence was constructed and used for determination of the sensitivity of the real-time PCR. This real-time PCR assay had a detection limit of one plasmid MBV DNA copy. Most significantly, this real-time PCR method can detect MBV positive samples from different geographic locations in the University of Arizona collection, including Thailand and Indonesia collected over a 13-year period.  相似文献   

9.
腺相关病毒(adeno-associated virus, AAV)是基因治疗领域最常使用的病毒载体之一,产量低、成本高是该产业面临的关键瓶颈问题。本研究旨在基于多基因缺失型杆状病毒,建立双病毒感染昆虫细胞以生产AAV的技术体系。首先,进行AAV生产用多基因缺失型重组杆状病毒的构建和扩增,并检测杆状病毒滴度及其感染细胞的效果;然后,使用双杆状病毒共感染昆虫细胞,并优化感染条件;最后,基于优化条件进行AAV生产,并检测评估产量、质量等相关指标。结果表明,AAV生产用多基因缺失型杆状病毒滴度较野生型无差异,感染后细胞存活率下降明显减缓。使用双病毒路线进行AAV优化生产,Bac4.0-1的基因组滴度为1.63×1011 VG/mL,Bac5.0-2的基因组滴度为1.02×1011 VG/mL,较野生型产量分别提升了240%和110%。电镜下,3组均具有正常的AAV病毒形态,且转导活性相近。本研究建立了基于多基因缺失型杆状病毒感染昆虫细胞的AAV生产体系,显著提高了AAV产量,具有一定的应用价值。  相似文献   

10.
A real-time polymerase chain reaction with SYBR Green was developed for the detection and quantification of encephalomyocarditis virus (EMCV) in porcine tissues; the method uses two primers specific for the 3D gene. The detection limit of this assay was 22 gene copies/reaction, equivalent to 0.001?TCID50/ml. The assay was linear over a 107 dilution range of template concentrations and was specific for EMCV; it did not amplify other porcine pathogens (porcine circovirus 2, porcine reproductive and respiratory virus, classical swine fever virus, pseudorabies virus, or porcine teschovirus). This assay detected EMCV titers at least 104 smaller than the routine PCR assay. To increase our understand of EMCV pathogenesis, the new method was used to quantify levels of EMCV genome in various tissues of artificially challenged sows and piglets. The virus was found mainly in the heart, lung, spleen, kidney, and endometrium of sows, and mainly in the heart, spleen, lung, and testis of fetuses. The real-time PCR method described here should be useful for the study of EMCV infection and distribution in pigs.  相似文献   

11.
The quantitative PCR infectivity assay is a combination of virus propagation and quantitative PCR. Previously [Schalk JAC, van den Elzen C, Ovelgonne H, Baas C, Jongen PMJM. Estimation of the number of infectious measles viruses in live virus vaccines using quantitative real-time PCR. J Virol Methods 2004;117:179-87.], we used this assay to estimate the titer of infectious measles virus in trivalent, live, measles, mumps, rubella vaccines (MMR). Here we describe the further improvement and development of the assay for simultaneous potency estimation of measles, mumps and rubella viruses. The potency of measles and mumps virus is estimated within one assay after 1 day of cell culture. The potency of rubella virus is estimated in a separate assay after 2 days of cell culture. Compared to conventional CCID50 and plaque assays, the quantitative PCR infectivity assay has the advantage in being fast because the assay is not dependent on the formation of cytopathic effect. Furthermore assay design is simplified: serological neutralization can be omitted because PCR is virus-specific and, under the conditions used, the individual components of trivalent measles, mumps, rubella vaccines do not interfere with each other. The assay was validated and compared to the performance of a plaque assay.  相似文献   

12.
Recombinant baculoviruses derived from the Autographa californica nuclear polyhedrosis virus (AcNPV) are widely used to express heterologous genes in insect cells, but the use of the baculovirus expression vector system (BEVS) is hampered by slow and tedious procedures for the selection and separation of baculovirus-infected insect cells and for titer determination. Here we developed a new technology based on the bicistronic vector with a fusion protein of the human integral plasma membrane glycoprotein CD4 and green fluorescent protein (GFP) for concomitant expression of target proteins in insect Sf21 cells. Magnetic cell sorting (MACS) technology with anti-CD4 antibody-labeled superparamagnetic beads was used to separate the baculovirus-infected from the noninfected insect cells and therefore to increase the virus titer and to reduce process time. With the herein described use of the MACS-improved baculovirus expression plasmid MACS in baculovirus expression (pMACSiBac-1), we have been able to select the baculovirus-infected insect cells at an early time point of the infection cycle and therefore enrich the virus titer dramatically. Furthermore, simple end point dilution and GFP fluorescence detection can be used for early and facile detection of recombinant viruses and simplified titer determinations. We show that the bicistronic pMACSiBac-1 with an additional multiple cloning site under the control of the very late promoter polyhedrin (PPH) allows for the expression of target proteins in high amounts, less workloads, and shorter timelines.  相似文献   

13.
The attenuated S- strain of Japanese encephalitis virus was produced from a wild strain of this virus by serial cultivation in primary bovine kidney cell cultures at 30 degrees C. Pigs were inoculated with it and examined for ability to produce antibody and protect themselves from infection with a wild strain used for challenge. In pigs inoculated with a single dose of 10(6.5) approximately 10(7.5) TCID50 of the S- strain, the neutralizing antibody titer or hemagglutination-inhibiting antibody (HI) titer increased to 10 approximately 320. An antibody titer exceeding 10 was maintained for 2 approximately 9 weeks. In pigs inoculated twice with 10(6.5) approximately 10(7.0) TCID50 of the S- strain, HI titer increased to 80 approximately 640. In many of these pigs, HI titers of 80 approximately 160 persisted for more than 6 weeks. Pigs inoculated once or twice with 10(7.0) approximately 10(7.5) TCID50 of the S- strain were challenged by inoculation with 10(4.5) approximately 10(5.5) TCID50 of a wild strain and examined for the occurrence of viremia. As a result, an ability to protect from infection was demonstrated in pigs which showed an antibody titer surpassing 10 at the time of challenge. Pregnant sows inoculated with 10(7.0) TCID50 of the S- strain were challenged by inoculation with 10(7.0) TCID50 of a wild strain. Neither death nor infection occurred to any fetus harbored by them. From these results, it is concluded that the S- strain can be used as live virus vaccine for porcine practice.  相似文献   

14.
Porcine epidemic diarrhea virus (PEDV) was identified in the United States (U.S.) swine population for the first time in April 2013 and rapidly spread nationwide. However, no information has been published regarding the minimum infectious dose (MID) of PEDV in different pig models. The main objective of this study was to determine the oral minimum infectious dose of PEDV in naïve conventional neonatal piglets and weaned pigs. A U.S. virulent PEDV prototype isolate (USA/IN19338/2013) with known infectious titer was serially ten-fold diluted in virus-negative cell culture medium. Dilutions with theoretical infectious titers from 560 to 0.0056 TCID50/ml together with a medium control were orogastrically inoculated (10ml/pig) into 7 groups of 5-day-old neonatal pigs (n = 4 per group) and 7 groups of 21-day-old weaned pigs (n = 6 per group). In 5-day-old pigs, 10ml of inoculum having titers 560–0.056 TCID50/ml, corresponding to polymerase chain reaction (PCR) cycle threshold (Ct) values 24.2–37.6, resulted in 100% infection in each group; 10ml of inoculum with titer 0.0056 TCID50/ml (Ct>45) caused infection in 25% of the inoculated pigs. In 21-day-old pigs, 10ml of inoculum with titers 560–5.6 TCID50/ml (Ct 24.2–31.4) resulted in 100% infection in each group while 10ml of inoculum with titers 0.56–0.0056 TCID50/ml (Ct values 35.3 –>45) did not establish infection in any pigs under study conditions as determined by clinical signs, PCR, histopathology, immunohistochemistry, and antibody response. These data reveal that PEDV infectious dose is age-dependent with a significantly lower MID for neonatal pigs compared to weaned pigs. This information should be taken into consideration when interpreting clinical relevance of PEDV PCR results and when designing a PEDV bioassay model. The observation of such a low MID in neonates also emphasizes the importance of strict biosecurity and thorough cleaning/disinfection on sow farms.  相似文献   

15.
The titer of retroviral vectors can be increased by cocultivation of retrovirus packaging cells that produce a vector with packaging cells having a different host range. Multiple rounds of infection occur in such cultures, producing an amplification of vector copy number and titer. Production of a vector with a very high titer of over 10(10) CFU per ml of conditioned medium has been reported, although replication-competent helper virus was also present. Since helper-free virus is a requirement for many applications of retroviral vectors, we repeated this procedure with a modified vector and achieved a 2- to 10-fold amplification of vector titer in the absence of helper virus, up to 2 x 10(7) CFU/ml. We have also repeated these experiments with the same vector and methods described previously or have assayed virus from the high-titer vector-producing cell line reported previously and observed maximum titers of 10(8) CFU/ml, invariably accompanied by helper virus. Thus, while amplification of vector titer in the absence of helper virus is possible, some unexplained difference in the assays for virus titer must account for our inability to obtain the exceptionally high vector titers that were reported previously.  相似文献   

16.
Rapid expression of recombinant proteins for structure determination is one of the major challenges in pharmaceutical and academic research, since the number of potential drug targets has increased significantly in the last decade. Despite the fact that the baculovirus expression vector system is widely used for this purpose, the system is hampered by three very slow and tedious procedures, namely generation of high titer baculovirus stock, determination of the virus titer and discovery of the best conditions for protein expression. We herein describe the development of the ultraBac system to address and overcome these issues for protein expression in insect cells. We have established a new baculovirus expression technology for insect cells that is based on co-expression of GFP with target genes, a new regime for cell culturing and a highly efficient purification and enrichment procedure for recombinant baculovirus particles. Co-expression of GFP is used to monitor the infection of insect cells, to simplify titer determination and to optimize expression conditions. The new regime for cell culturing with increased viability of non-infected insect cells and its combination with the massive enrichment of virus particles via high-speed centrifugation enables the production of large amounts of recombinant virus in a very short period of time. By combining these techniques and by using the bicistronic vector pUltraBac-1, we have been able to cut the time-lines for protein expression in insect cells by half, approaching those for protein production in Escherichia coli. This new expression system is a significant step forward towards industrialized protein production in both, industry and academia.  相似文献   

17.
This report describes the methods used to obtain high titers of chikungunya virus with suspension cultures of BHK-21-clone 13 cells. The cells were grown at 37 C to a cell concentration of 10(6) to 2 x 10(6) per ml. After maximum cell growth, the cells were inoculated with chikungunya virus at a multiplicity of 1 to 2 50% suckling mouse intracerebral lethal doses (SMICLD(50)) per cell in the spent Eagle's minimum essential medium for suspension cultures (MEMS), or the cell cultures were centrifuged at 200 x g and resuspended in either fresh MEMS or medium 199 prior to inoculation. The medium used had no effect on virus titer. The inoculated cultures were incubated at 34 C until the cell viability dropped to 30%, which usually occurred 28 to 30 hr postinoculation. After these procedures, chikungunya virus titers of log(10) 10.3 to 11.8 SMICLD(50) per ml were obtained.  相似文献   

18.
Quantification of viral infectious units is traditionally measured by methods based on forming plaques in semisolid media (PFU) or endpoint dilution of a virus-containing solution (TCID50), methods that are laborious, time-consuming and take on average 3–7 days to carry out. Quantitative real-time PCR is an established method to quantify nucleic acids at high accuracy and reproducibility, routinely used for virus detection and identification. In the present study, a procedure was developed using a two-step real-time PCR and the SYBR Green detection method to study whether there are correlations between TCID50/ml, PFU/ml and Ct values generated by real-time PCR enabling rapid and efficient calculation of titer equivalents when working with viruses in the research laboratory. In addition, an external standard with known concentrations was included using in vitro transcribed viral RNA, thus allowing the calculation of the amount of RNA copies needed for various applications (i.e. per plaque or TCID50).The results show that there is a correlation between the three quantification methods covering a wide range of concentration of viruses. Furthermore, a general regression line between TCID50 and Ct values was obtained for all viruses included in the study, which enabled recording titer equivalents using real-time PCR. Finally, by including an external standard, the amount of RNA genomes generating one TCID50 or PFU for each enterovirus serotype included was determined.  相似文献   

19.
A recombinant baculovirus expressing the hemagglutinin gene of the influenza virus, A/PR/8/34 (H1N1), under the control of the chicken beta-actin promoter, was constructed. To determine the induction of protective immunity in vivo, mice were inoculated with the recombinant baculovirus by intramuscular, intradermal, i.p., and intranasal routes and then were challenged with a lethal dose of the influenza virus. Intramuscular or i.p. immunization with the recombinant baculovirus elicited higher titers of antihemagglutinin Ab than intradermal or intranasal administration. However, protection from a lethal challenge of the influenza virus was only achieved by intranasal immunization of the recombinant baculovirus. Surprisingly, sufficient protection from the lethal influenza challenge was also observed in mice inoculated intranasally with a wild-type baculovirus, as evaluated by reductions in the virus titer, inflammatory cytokine production, and pulmonary consolidations. These results indicate that intranasal inoculation with a wild-type baculovirus induces a strong innate immune response, which protects mice from a lethal challenge of influenza virus.  相似文献   

20.
The VR strain of avian encephalomyelitis virus, which had been adapted to embryonated hen's eggs, was inoculated into 2-day-old chicks by the subcutaneous route (10(2.5) approximately 10(3.0) EID50) or by the oral route (10(4.8) EID50). The chicks were examined chronologically for the distribution of the virus in the body. As a result, minute amounts of the virus were detected from the liver, spleen, pancreas, and muscle at the site of inoculation one day after inoculation and various amounts from almost all the organs 3 days and more after inoculation. The virus titer could nearly reach a maximum 7 to 9 days after inoculation. Above all, such high virus titers as ranging from 10(4.3) to 10(5.8) EID50/0.1 g were demonstrated in the brain, heart, liver, spleen, and pancreas. After that, there was a tendency for virus titer to decrease in most organs and for virus to multiply persistently in the pancreas, brain, and eyeball. Virus titer was maintained at a level of 10(2.3) approximately 10(2.8) EID50/0.1 g in these three organs even 21 days after inoculation. In the group of subcutaneous inoculation, all the chicks manifested clinical signs of infection 5 to 10 days after inoculation. On the other hand, no chicks were involved in clinical infection in the group of oral inoculation. Multiplication of the virus was delayed in the body of these chicks. Small amounts of the virus were detected from the spleen and pancreas 11 days after inoculation. Low titers (10(2.7) EID50/0.1 g at the highest) of the virus were only detected from the brain, spinal cord, spleen, pancreas, esophagus, and other organs 14 and 21 days after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号