首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Rapid progress has been made in the development of common standards for data exchange in the fields of both mass spectrometry and protein-protein interactions since the first PSI meeting [1]. Both hardware and software manufacturers have agreed to work to ensure that a proteomics-specific extension is created for the emerging ASTM mass spectrometry standard and the data model for a proteomics experiment has advanced significantly. The Protein-Protein Interactions (PPI) group expects to publish the Level 1 PSI data exchange format for protein-protein interactions by early summer this year, and discussion as to the additional content of Level 2 has been initiated.  相似文献   

2.
The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Progress has been made in the development of common standards for data exchange in the fields of both mass spectrometry and protein-protein interaction. A proteomics-specific extension is being created for the emerging American Society for Tests and Measurements mass spectrometry standard, which will be supported by manufacturers of both hardware and software. A data model for proteomics experimentation is under development and discussions on a public repository for published proteomics data are underway. The Protein-Protein Interactions group expects to publish the Level 1 PSI data exchange format for protein-protein interactions soon and discussions as to the content of Level 2 have been initiated.  相似文献   

3.
The spring workshop of the HUPO-PSI convened in Siena to further progress the data standards which are already making an impact on data exchange and deposition in the field of proteomics. Separate work groups pushed forward existing XML standards for the exchange of Molecular Interaction data (PSI-MI, MIF) and Mass Spectrometry data (PSI-MS, mzData) whilst significant progress was made on PSI-MS' mzIdent, which will allow the capture of data from analytical tools such as peak list search engines. A new focus for PSI (GPS, gel electrophoresis) was explored; as was the need for a common representation of protein modifications by all workers in the field of proteomics and beyond. All these efforts are contextualised by the work of the General Proteomics Standards workgroup; which in addition to the MIAPE reporting guidelines, is continually evolving an object model (PSI-OM) from which will be derived the general standard XML format for exchanging data between researchers, and for submission to repositories or journals.  相似文献   

4.
The Human Proteome Organization's Proteomics Standards Initiative (PSI) promotes the development of exchange standards to improve data integration and interoperability. PSI specifies the suitable level of detail required when reporting a proteomics experiment (via the Minimum Information About a Proteomics Experiment), and provides extensible markup language (XML) exchange formats and dedicated controlled vocabularies (CVs) that must be combined to generate a standard compliant document. The framework presented here tackles the issue of checking that experimental data reported using a specific format, CVs and public bio‐ontologies (e.g. Gene Ontology, NCBI taxonomy) are compliant with the Minimum Information About a Proteomics Experiment recommendations. The semantic validator not only checks the XML syntax but it also enforces rules regarding the use of an ontology class or CV terms by checking that the terms exist in the resource and that they are used in the correct location of a document. Moreover, this framework is extremely fast, even on sizable data files, and flexible, as it can be adapted to any standard by customizing the parameters it requires: an XML Schema Definition, one or more CVs or ontologies, and a mapping file describing in a formal way how the semantic resources and the format are interrelated. As such, the validator provides a general solution to the common problem in data exchange: how to validate the correct usage of a data standard beyond simple XML Schema Definition validation. The framework source code and its various applications can be found at http://psidev.info/validator .  相似文献   

5.
The Human Proteome Organisation Proteomics Standards Initiative (HUPO‐PSI) was established in 2002 with the aim of defining community standards for data representation in proteomics and facilitating data comparison, exchange and verification. The 2013 annual spring workshop was hosted by the University of Liverpool, UK and concentrated on updating and refining the existing standards in the light of new methodologies and technologies. To control the inflation of file sizes, strategies for file compression, particularly for mzML files, were explored. Best practices for encoding information such as protein grouping and PTM localisation were refined and documented. Additional example files for the mzQuantML format were designed to provide support for selected reaction monitoring techniques. Enhancements to the PSI Common Query Interface (PSICQUIC) and PSI‐MI XML were discussed. Finally, the group engaged in discussion on how the existing work of the HUPO‐PSI can be leveraged by the Metabolomics Standards Initiative to improve the capture of metabolite data.  相似文献   

6.
The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Initially the fields of protein-protein interactions (PPI) and mass spectroscopy have been targeted and the inaugural meeting of the PSI addressed the questions of data storage and exchange in both of these areas. The PPI group rapidly reached consensus as to the minimum requirements for a data exchange model; an XML draft is now being produced. The mass spectroscopy group have achieved major advances in the definition of a required data model and working groups are currently taking these discussions further. A further meeting is planned in January 2003 to advance both these projects.  相似文献   

7.
The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel‐based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.  相似文献   

8.
The Annual 2014 Spring Workshop of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) was held this year jointly with the metabolomics COordination of Standards in MetabOlomicS (COSMOS) group. The range of existing MS standards (mzML, mzIdentML, mzQuantML, mzTab, TraML) was reviewed and updated in the light of new methodologies and advances in technologies. Adaptations to meet the needs of the metabolomics community were incorporated and a new data format for NMR, nmrML, was presented. The molecular interactions workgroup began work on a new version of the existing XML data interchange format. PSI‐MI XML3.0 will enable the capture of more abstract data types such as protein complex topology derived from experimental data, allosteric binding, and dynamic interactions. Further information about the work of the HUPO‐PSI can be found at http://www.psidev.info .  相似文献   

9.
The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R.We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online.Mass spectrometry (MS)1 has become a major analysis tool in the life sciences (1). It is currently used in different modes for several “omics” approaches, proteomics and metabolomics being the most prominent. In both disciplines, one major burden in the exchange, communication, and large-scale (re-) analysis of MS-based data is the significant number of software pipelines and, consequently, heterogeneous file formats used to process, analyze, and store these experimental results, including both identification and quantification data. Publication guidelines from scientific journals and funding agencies'' requirements for public data availability have led to an increasing amount of MS-based proteomics and metabolomics data being submitted to public repositories, such as those of the ProteomeXchange consortium (2) or, in the case of metabolomics, the resources from the nascent COSMOS (Coordination of Standards in Metabolomics) initiative (3).In the past few years, the Human Proteome Organization Proteomics Standards Initiative (PSI) has developed several vendor-neutral standard data formats to overcome the representation heterogeneity. The Human Proteome Organization PSI promotes the usage of three XML file formats to fully report the data coming from MS-based proteomics experiments (including related metadata): mzML (4) to store the “primary” MS data (the spectra and chromatograms), mzIdentML (5) to report peptide identifications and inferred protein identifications, and mzQuantML (6) to store quantitative information associated with these results.Even though the existence of the PSI standard data formats represents a huge step forward, these formats cannot address all use cases related to proteomics and metabolomics data exchange and sharing equally well. During the development of mzML, mzIdentML, and mzQuantML, the main focus lay on providing an exact and comprehensive representation of the gathered results. All three formats can be used within analysis pipelines and as interchange formats between independent analysis tools. It is thus vital that these formats be capable of storing the full data and analysis that led to the results. Therefore, all three formats result in relatively complex schemas, a clear necessity for adequate representation of the complexity found in MS-based data.An inevitable drawback of this approach is that data consumers can find it difficult to quickly retrieve the required information. Several application programming interfaces (APIs) have been developed to simplify software development based on these formats (79), but profound proteomics and bioinformatics knowledge still is required in order to use them efficiently and take full advantage of the comprehensive information contained.The new file format presented here, mzTab, aims to describe the qualitative and quantitative results for MS-based proteomics and metabolomics experiments in a consistent, simpler tabular format, abstracting from the mass spectrometry details. The format contains identifications, basic quantitative information, and related metadata. With mzTab''s flexible design, it is possible to report results at different levels ranging from a simple summary or subset of the complete information (e.g. the final results) to fairly comprehensive representation of the results including the experimental design. Many downstream analysis use cases are only concerned with the final results of an experiment in an easily accessible format that is compatible with tools such as Microsoft Excel® or R (10) and can easily be adapted by existing bioinformatics tools. Therefore, mzTab is ideally suited to make MS proteomics and metabolomics results available to the wider biological community, beyond the field of MS.mzTab follows a similar philosophy as the other tab-delimited format recently developed by the PSI to represent molecular interaction data, MITAB (11). MITAB is a simpler tab-delimited format, whereas PSI-MI XML (12), the more detailed XML-based format, holds the complete evidence. The microarray community makes wide use of the format MAGE-TAB (13), another example of such a solution that can cover the main use cases and, for the sake of simplicity, is often preferred to the XML standard format MAGE-ML (14). Additionally, in MS-based proteomics, several software packages, such as Mascot (15), OMSSA (16), MaxQuant (17), OpenMS/TOPP (18, 19), and SpectraST (20), also support the export of their results in a tab-delimited format next to a more complete and complex default format. These simple formats do not contain the complete information but are nevertheless sufficient for the most frequent use cases.mzTab has been designed with the same purpose in mind. It can be used alone or in conjunction with mzML (or other related MS data formats such as mzXML (21) or text-based peak list formats such as MGF), mzIdentML, and/or mzQuantML. Several highly successful concepts taken from the development process of mzIdentML and mzQuantML were adapted to the text-based nature of mzTab.In addition, there is a trend to perform more integrated experimental workflows involving both proteomics and metabolomics data. Thus, we developed a standard format that can represent both types of information in a single file.  相似文献   

10.
Hermjakob H 《Proteomics》2006,6(Z2):34-38
Proteomics is a key field of modern biomolecular research, with many small and large scale efforts producing a wealth of proteomics data. However, the vast majority of this data is never exploited to its full potential. Even in publicly funded projects, often the raw data generated in a specific context is analysed, conclusions are drawn and published, but little attention is paid to systematic documentation, archiving, and public access to the data supporting the scientific results. It is often difficult to validate the results stated in a particular publication, and even simple global questions like "In which cellular contexts has my protein of interest been observed?" can currently not be answered with realistic effort, due to a lack of standardised reporting and collection of proteomics data. The Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organisation (HUPO), defines community standards for data representation in proteomics to facilitate systematic data capture, comparison, exchange and verification. In this article we provide an overview of PSI organisational structure, activities, and current results, as well as ways to get involved in the broad-based, open PSI process.  相似文献   

11.
XEMBL: distributing EMBL data in XML format   总被引:7,自引:0,他引:7  
Data in the EMBL Nucleotide Sequence Database is traditionally available in a flat file format that has a number of known shortcomings. With XML rapidly emerging as a standard data exchange format that can address some problems of flat file formats by defining data structure and syntax, there is now a demand to distribute EMBL data in an XML format. XEMBL is a service tool that employs CORBA servers to access EMBL data, and distributes the data in XML format via a number of mechanisms. AVAILABILITY: Use of the XEMBL service is free of charge at http://www.ebi.ac.uk/xembl/, and can be accessed via web forms, CGI, and a SOAP-enabled service. SUPPLEMENTARY INFORMATION: Information on the EMBL Nucleotide Sequence Database is available at http://www.ebi.ac.uk/embl/. The EMBL Object Model is available at http://corba.ebi.ac.uk/models/. Information on the EMBL CORBA servers is at http://corba.ebi.ac.uk/  相似文献   

12.
Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml.  相似文献   

13.
A broad range of mass spectrometers are used in mass spectrometry (MS)-based proteomics research. Each type of instrument possesses a unique design, data system and performance specifications, resulting in strengths and weaknesses for different types of experiments. Unfortunately, the native binary data formats produced by each type of mass spectrometer also differ and are usually proprietary. The diverse, nontransparent nature of the data structure complicates the integration of new instruments into preexisting infrastructure, impedes the analysis, exchange, comparison and publication of results from different experiments and laboratories, and prevents the bioinformatics community from accessing data sets required for software development. Here, we introduce the 'mzXML' format, an open, generic XML (extensible markup language) representation of MS data. We have also developed an accompanying suite of supporting programs. We expect that this format will facilitate data management, interpretation and dissemination in proteomics research.  相似文献   

14.
The Annual Spring workshop of the HUPO-PSI was this year held at the EMBL International Centre for Advanced Training (EICAT) in Heidelberg, Germany. Delegates briefly reviewed the successes of the group to date. These include the wide spread implementation of the molecular interaction data exchange formats, PSI-MI XML2.5 and MITAB, and also of mzML, the standard output format for mass spectrometer output data. These successes have resulted in enhanced accessibility to published data, for example the development of the PSICQUIC common query interface for interaction data and the development of databases such as PRIDE to act as public repositories for proteomics data and increased biosharing, through the development of consortia, for example IMEx and ProteomeXchange which will both share the burden of curating the increasing amounts of data being published and work together to make this more accessible to the bench scientist. Work then started over the three days of the workshop, with a focus on advancing the draft format for handling quantitative mass spectrometry data (mzQuantML) and further developing TraML, a standardized format for the exchange and transmission of transition lists for SRM experiments.  相似文献   

15.
The Protein Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Significant progress was made in advancing the design and implementation of a draft standard for exchanging experimental data from proteomics experiments involving mass spectrometry at the 51st Annual Conference of the American Society for Mass Spectrometry. In collaboration with the American Society for Tests and Measurements, the PSI propose to publish this first draft at the forthcoming HUPO 2nd World Congress in Montreal, 8-11 October 2003.  相似文献   

16.
mzXML (extensible markup language) is one of the pioneering data formats for mass spectrometry-based proteomics data collection. It is an open data format that has benefited and evolved as a result of the input of many groups, and it continues to evolve. Due to its dynamic history, its structure, purpose and applicability have all changed with time, meaning that groups that have looked at the standard at different points during its evolution have differing impressions of the usefulness of mzXML. In discussing mzXML, it is important to understand what mzXML is not. First, mzXML does not capture the raw data. Second, mzXML is not sufficient for regulatory submission. Third, mzXML is not optimized for computation and, finally, mzXML does not capture the experiment design. In general, it is the authors’ opinion that XML is not a panacea for bioinformatics or a substitute for good data representation, and groups that want to use mzXML (or other XML-based representations) directly for data storage or computation will encounter performance and scalability problems. With these limitations in mind, the authors conclude that mzXML is, nonetheless, an indispensable data exchange format for proteomics.  相似文献   

17.
What is mzXML good for?   总被引:1,自引:0,他引:1  
mzXML (extensible markup language) is one of the pioneering data formats for mass spectrometry-based proteomics data collection. It is an open data format that has benefited and evolved as a result of the input of many groups, and it continues to evolve. Due to its dynamic history, its structure, purpose and applicability have all changed with time, meaning that groups that have looked at the standard at different points during its evolution have differing impressions of the usefulness of mzXML. In discussing mzXML, it is important to understand what mzXML is not. First, mzXML does not capture the raw data. Second, mzXML is not sufficient for regulatory submission. Third, mzXML is not optimized for computation and, finally, mzXML does not capture the experiment design. In general, it is the authors' opinion that XML is not a panacea for bioinformatics or a substitute for good data representation, and groups that want to use mzXML (or other XML-based representations) directly for data storage or computation will encounter performance and scalability problems. With these limitations in mind, the authors conclude that mzXML is, nonetheless, an indispensable data exchange format for proteomics.  相似文献   

18.
The range of heterogeneous approaches available for quantifying protein abundance via mass spectrometry (MS)1 leads to considerable challenges in modeling, archiving, exchanging, or submitting experimental data sets as supplemental material to journals. To date, there has been no widely accepted format for capturing the evidence trail of how quantitative analysis has been performed by software, for transferring data between software packages, or for submitting to public databases. In the context of the Proteomics Standards Initiative, we have developed the mzQuantML data standard. The standard can represent quantitative data about regions in two-dimensional retention time versus mass/charge space (called features), peptides, and proteins and protein groups (where there is ambiguity regarding peptide-to-protein inference), and it offers limited support for small molecule (metabolomic) data. The format has structures for representing replicate MS runs, grouping of replicates (for example, as study variables), and capturing the parameters used by software packages to arrive at these values. The format has the capability to reference other standards such as mzML and mzIdentML, and thus the evidence trail for the MS workflow as a whole can now be described. Several software implementations are available, and we encourage other bioinformatics groups to use mzQuantML as an input, internal, or output format for quantitative software and for structuring local repositories. All project resources are available in the public domain from the HUPO Proteomics Standards Initiative http://www.psidev.info/mzquantml.The Proteomics Standards Initiative (PSI) has been working for ten years to improve the reporting and standardization of proteomics data. The PSI has published minimum reporting guidelines, called MIAPE (Minimum Information about a Proteomics Experiment) documents, for MS-based proteomics (1) and molecular interactions (2), as well as data standards for raw/processed MS data in mzML (3), peptide and protein identifications in mzIdentML (4), transitions for selected reaction monitoring analysis in TraML (5), and molecular interactions in PSI-MI format (6). Standards are particularly important for quantitative proteomics research, because the associated bioinformatics analysis is highly challenging as a result of the range of different experimental techniques for deriving abundance values for proteins using MS. The techniques can be broadly divided into those based on (i) differential labeling, in which a metabolic label or chemical tag is applied to cells, peptides, or proteins, samples are mixed, and intensity signals for peptide ions are compared within single MS runs; or (ii) label-free methods in which MS runs occur in parallel and bioinformatics methods are used to extract intensity signals, ensuring that like-for-like signals are compared between runs (7). In most label-based and label-free approaches, peptide ratios or abundance values must be summarized in order for one to arrive at relative protein abundance values, taking into account ambiguity in peptide-to-protein inference. Absolute protein abundance values can typically be derived only using internal standards spiked into samples of known abundance (8, 9). The PSI has recently developed a MIAPE-Quant document defining and describing the minimal information necessary in order to judge or repeat a quantitative proteomics experiment.Software packages tend to report peptide or protein abundance values in a bespoke format, often as tab or comma separated values, for import into spreadsheet software. In complementary work, the PSI has developed a standard format for capturing these final results in a standardized tab separated value format, called mzTab, suitable for post-processing and visualization in end-user tools such as Microsoft Excel or the R programming language. The final results of a quantitative analysis are sufficient for many purposes, such as performing statistical analysis to determine differential expression or cluster analysis to find co-expressed proteins. However, mzTab (or similar bespoke formats) was not designed to hold a trace of how the peptide and protein abundance values were calculated from MS data (i.e. metadata is lost that might be crucial for other tasks). For example, most quantitative software packages detect and quantify so-called “features” (representing all ions collected for a given peptide) in two-dimensional MS data, where the two dimensions are retention time from liquid chromatography (LC) and mass over charge (m/z). Without capturing the two-dimensional coordinates of the features, it is not possible to write visualization software showing exactly what the software has quantified; researchers have to trust that the software has accurately quantified all ions from isotopes of a given peptide, excluding any overlapping ions derived from other peptides. The history of proteomics research has been one in which studies of highly variable quality have been published. There is also little quality control or benchmarking performed on quantitative software (10), meaning it is difficult to make quality judgments on a set of peptide and protein abundance values. The PSI has recently developed mzML, which can capture raw or processed MS data in a vendor neutral format, and the mzIdentML standard, to capture search engine results and the important metadata (such as software parameters), such that peptide and protein identification data can be interpreted consistently. These two standards are now being used for data sharing and to support open source software development, so that informatics groups can focus on algorithmic development rather than file format conversions. Until now, there has been no widely used open source format or data standard for capturing metadata and data relating to the quantitation step of analysis pipelines. In this work, we report the mzQuantML standard from the PSI, which has recently completed the PSI standardization process (11), from which version 1.0 was released. We believe that quantitative proteomics research will benefit from improved capabilities for tracing what manipulations have happened to data at each stage of the analysis process. The mzQuantML standard has been designed to store quantitative values calculated for features, peptides, proteins, and/or protein groups (where there is ambiguity in protein inference), plus associated software parameters. It has also been designed to accommodate small molecule data to improve interoperability with metabolomics investigations. The format can represent experimental replicates and grouping of replicates, and it has been designed via an open and transparent process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号