首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activin, a member of the TGFbeta superfamily, is expressed in the prostate and inhibits growth. We demonstrate that the effects of activin and androgen on regulation of prostate cancer cell growth are mutually antagonistic. In the absence of androgen, activin induced apoptosis in the androgen-dependent human prostate cancer cell line LNCaP, an effect suppressed by androgen administration. Although activin by itself did not alter the cell cycle distribution, it potently suppressed androgen- induced progression of cells into S-phase of the cell cycle and thus inhibited androgen-stimulated growth of LNCaP cells. Expression changes in cell cycle regulatory proteins such as Rb, E2F-1, and p27 demonstrated a strong correlation with the mutually antagonistic growth regulatory effects of activin and androgen. The inhibitory effect of activin on growth was independent of serine, serine, valine, serine motif phosphorylation of Smad3. Despite their antagonistic effect on growth, activin and androgen costimulated the expression of prostate-specific antigen through a Smad3-mediated mechanism. These observations indicate the existence of a complex cross talk between activin and androgen signaling in regulation of gene expression and growth of the prostate.  相似文献   

2.
3.
Aim of the studyRecently, Tinospora cordifolia (TC) was shown to affect prostate growth in rats. It is not known whether this is a direct effect of TC or whether it is induced by altered hormone release. To investigate the actions of TC on the prostate, human LNCaP cells were exposed to an ethanolic extract of TC.Materials and MethodsLNCaP cells were incubated with the test substances for 48 h. Proliferation was measured by MTT test and prostate-specific antigen (PSA) secretion was determined with ELISA.ResultsTC showed a dose-dependent stimulation of proliferation of LNCaP cells. Co-incubation with the anti-androgen flutamide (FLU) reversed the TC-induced stimulation of PSA secretion.ConclusionsThe reference compound dihydrotestosterone (DHT) caused a significant increase of growth of LNCaP cells. Similarly, TC stimulated proliferation of these prostate cells. The anti-androgen FLU reversed the increase of PSA release caused by either DHT or TC. Thus, we suggest that TC may contain androgenic compounds, which appear to act via androgen receptor (AR).  相似文献   

4.
5.
Semiconductor quantum dots (QDs) are bright fluorescent nanoparticles that have been successfully used for the detection of biomarker expression in cells. The objective of the present study is to use this technology in a multiplexing manner to determine at a single cell level the expression of a cell-specific bio-marker, prostate-specific antigen (PSA) expressed by human prostate cancer LNCaP and ARCaP cell lines. Here we compared the sensitivity of immunohistochemistry (IHC) and QD-based detection of AR and PSA expression in these cell lines. Further, we conducted multiplexing QD-based detection of PSA and androgen receptor (AR) expression in LNCaP cells subjecting to androgen (R1881) stimulation. The involvement of AR in PSA regulation in LNCaP cells, at a single cell level, was confirmed by the co-incubation of LNCaP cells in the presence of both R1881 and its receptor antagonist, bicalutamide (Casodex). We showed here the superior quality of QDs, in comparison to IHC, for the detection of AR and PSA in cultured LNCaP and ARCaP cells. Multiplexing QDs technique can be used to detect simultaneously AR and PSA expression induced by R1881 which promoted AR translocation from its cytosolic to the nuclear compartment. We observed AR antagonist, bicalutamide, inhibited AR nuclear translocation and PSA, but not AR expression in LNCaP cells.  相似文献   

6.
Previous gene array data from our laboratory identified the retinoic acid (RA) biosynthesis enzyme aldehyde dehydrogenase 1A3 (ALDH1A3) as a putative androgen-responsive gene in human prostate cancer epithelial (LNCaP) cells. In the present study, we attempted to identify if any of the three ALDH1A/RA synthesis enzymes are androgen responsive and how this may affect retinoid-mediated effects in LNCaP cells. We demonstrated that exposure of LNCaP cells to the androgen dihydrotestosterone (DHT) results in a 4-fold increase in ALDH1A3 mRNA levels compared with the untreated control. The mRNA for two other ALDH1A family members, ALDH1A1 and ALDH1A2, were not detected and not induced by DHT in LNCaP cells. Inhibition of androgen receptor (AR) with both the antiandrogen bicalutamide and small interfering RNA for AR support that ALDH1A3 regulation by DHT is mediated by AR. Furthermore, specific inhibition of the extracellular signal-regulated kinase and Src family of kinases with PD98059 and PP1 supports that AR's regulation of ALDH1A3 occurs by the typical AR nuclear-translocation cascade. Consistent with an increase in ALDH1A3 mRNA, DHT-treated LNCaP cells showed an 8-fold increase in retinaldehyde-dependent NAD(+) reduction compared with control. Lastly, treatment of LNCaP with all-trans retinal (RAL) in the presence of DHT resulted in significant up-regulation of the RA-inducible, RA-metabolizing enzyme CYP26A1 mRNA compared with RAL treatment alone. Taken together, these data suggest that (i) the RA biosynthesis enzyme ALDH1A3 is androgen responsive and (ii) DHT up-regulation of ALDH1A3 can increase the oxidation of retinal to RA and indirectly affect RA bioactivity and metabolism.  相似文献   

7.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

8.
9.
10.
This study was conducted to evaluate the effect of androgen ablation on dog prostate gland structure and the proliferation capacity of the prostatic cells and their association with the expression of Activin A and Activin RIIA receptor. The effect of androgen on the prostate gland was compared in intact and castrated dogs after one and two weeks. Specific primary antibodies were used to immunolocalize activin-A, activin receptor type II A and the proliferation marker (PCNA). The results showed that the glandular acini of the prostate gland of intact dogs are lined by tall columnar secretory cells and less abundant flattened basal cells and surrounded by a thin fibromuscular tissue. The cytoplasm of the glandular cells exhibited an intense immunoreaction for activin A and activin RIIA receptor while basal cells expressed PCNA. Castration induced a remarkable atrophy of the prostatic acini associated with a progressive loss of secretory epithelial cells, which showed a dramatic decrease to complete disappearance of Activin A and Activin RIIA receptor immunoreactions. The remaining cells of the atrophied acini continue to express PCNA and the inter-acinar fibromuscular tissue showed a remarkable increase in its mass and are induced to express PCNA. These results indicated that androgen is required for the survival of epithelial cells and to maintain growth-quiescent fibromuscular cells, while basal cell proliferation is androgen independent. The changes in the Activin A and Activin RIIA receptor localization and their association with the dynamic pattern of prostate gland regression after castration suggested that Activin A and Activin RIIA receptor expression are androgen dependent.  相似文献   

11.
12.
13.
Dehydroepiandrosterone (DHEA) is commonly used as a dietary supplement and may affect prostate pathophysiology when metabolized to androgens and/or estrogens. Human prostate LAPC-4 cancer cells with a wild type androgen receptor (AR) were treated with DHEA, androgens dihydrotestosterone (DHT), T, or R1881), and E(2) and assayed for prostate specific antigen (PSA) protein and gene expression. In LAPC-4 monocultures, DHEA and E(2) induced little or no increase in PSA protein or mRNA expression compared to androgen-treated cells. When prostate cancer-associated (6S) stromal cells were added in coculture, DHEA stimulated LAPC-4 cell PSA protein secretion to levels approaching induction by DHT. Also, DHEA induced 15-fold more PSA mRNA in LAPC-4 cocultures than in monocultures. LAPC-4 proliferation was increased 2-3-fold when cocultured with 6S stromal cells regardless of hormone treatment. DHEA-treated 6S stromal cells exhibited a dose- and time-dependent increase in T secretion, demonstrating stromal cell metabolism of DHEA to T. Coculture with non-cancerous stroma did not induce LAPC-4 PSA production, suggesting a differential modulation of DHEA effect in a cancer-associated prostate stromal environment. This coculture model provides a research approach to reveal detailed endocrine, intracrine, and paracrine signaling between stromal and epithelial cells that regulate tissue homeostasis within the prostate, and the role of the tumor microenvironment in cancer progression.  相似文献   

14.
The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ~160,000 small molecules was performed in cells stably expressing AR and a prostate-specific antigen (PSA)-luciferase reporter. CPIC (1-(3-(2-chlorophenoxy) propyl)-1H-indole-3-carbonitrile) was identified as a small molecule that blocks AR transactivation to a greater extent than other steroid receptors. CPIC inhibited AR-mediated proliferation of androgen-sensitive prostate cancer cell lines, with minimal toxicity in AR-negative cell lines. CPIC treatment also reduced the anchorage-independent growth of LAPC-4 prostate cancer cells. CPIC functioned as a pure antagonist by inhibiting the expression of AR-regulated genes in LAPC-4 cells that express wild-type AR and exhibited weak agonist activity in LNCaP cells that express the mutant AR-T877A. CPIC treatment did not reduce AR levels or alter its nuclear localization. We used chromatin immunoprecipitation to identify the site of action of CPIC. CPIC inhibited recruitment of androgen-bound AR to the PSA promoter and enhancer sites to a greater extent than bicalutamide. CPIC is a new therapeutic inhibitor that targets AR-mediated gene activation with potential to arrest the growth of prostate cancer.  相似文献   

15.
《Cytokine》2014,70(2):255-262
Activin A, a member of the transforming growth factor-β superfamily, is stimulated early in inflammation via the Toll-like receptor (TLR) 4 signalling pathway, which is also activated in myocardial ischaemia–reperfusion. Neutralising activin A by treatment with the activin-binding protein, follistatin, reduces inflammation and mortality in several disease models. This study assesses the regulation of activin A and follistatin in a murine myocardial ischaemia–reperfusion model and determines whether exogenous follistatin treatment is protective against injury. Myocardial activin A and follistatin protein levels were elevated following 30 min of ischaemia and 2 h of reperfusion in wild-type mice. Activin A, but not follistatin, gene expression was also up-regulated. Serum activin A did not change significantly, but serum follistatin decreased. These responses to ischaemia–reperfusion were absent in TLR4−/− mice. Pre-treatment with follistatin significantly reduced ischaemia–reperfusion induced myocardial infarction. In mouse neonatal cardiomyocyte cultures, activin A exacerbated, while follistatin reduced, cellular injury after 3 h of hypoxia and 2 h of re-oxygenation. Neither activin A nor follistatin affected hypoxia-reoxygenation induced reactive oxygen species production by these cells. However, activin A reduced cardiomyocyte mitochondrial membrane potential, and follistatin treatment ameliorated the effect of hypoxia-reoxygenation on cardiomyocyte mitochondrial membrane potential. Taken together, these data indicate that myocardial ischaemia–reperfusion, through activation of TLR4 signalling, stimulates local production of activin A, which damages cardiomyocytes independently of increased reactive oxygen species. Blocking activin action by exogenous follistatin reduces this damage.  相似文献   

16.
17.
18.
The effect of follistatin on activin-induced granulosa cell differentiation was investigated in freshly harvested granulosa cells from diethylstilbestrol (DES)-treated rats. Activin induced a remarkable change in granulosa cellular morphology from elongated fibroblast-like to round cells, which follistatin prevented. Follistatin itself had no influence on the cellular morphology. We studied the action of follistatin on activin-induced differentiation of granulosa cells cultured in a chemically defined medium. Addition of activin (30 ng/ml) to the culture increased the FSH binding site approximately 2-fold compared with the control (spontaneous expression) level, whereas follistatin reduced the activin-induced expression level to the control level in a concentration-dependent manner. Activin (30 ng/ml) markedly augmented FSH-induced hCG binding and progesterone production by approximately 20-fold, and these effects were suppressed by follistatin in a concentration-dependent manner. Similarly, addition of follistatin to the culture induced a concentration-dependent decrease of activin-enhanced inhibin-producing activity, but had no effect on FSH-induced inhibin production. These results suggest that follistatin/activin-binding protein binds to activin stoichiometrically to suppress the activin-induced differentiation of rat granulosa cell in vitro, but follistatin itself has no direct effect on activin-independent reactions.  相似文献   

19.
20.
Activin A, a member of the transforming growth factor-beta superfamily, is constitutively expressed in hepatocytes and regulates liver mass through tonic inhibition of hepatocyte DNA synthesis. Follistatin is the main biological inhibitor of activin bioactivity. These molecules may be involved in hepatic fibrogenesis, although defined roles remain unclear. We studied activin and follistatin gene and protein expression in cultured rat hepatic stellate cells (HSCs) and in rats given CCl4 for 8 wk and examined the effect of follistatin administration on the development of hepatic fibrosis. In activated HSCs, activin mRNA was upregulated with high expression levels, whereas follistatin mRNA expression was unchanged from baseline. Activin A expression in normal lobular hepatocytes redistributed to periseptal hepatocytes and smooth muscle actin-positive HSCs in the fibrotic liver. A 32% reduction in fibrosis, maximal at week 4, occurred in CCl4-exposed rats treated with follistatin. Hepatocyte apoptosis decreased by 87% and was maximal at week 4 during follistatin treatment. In conclusion, activin is produced by activated HSCs in vitro and in vivo. Absence of simultaneous upregulation of follistatin gene expression in HSCs suggests that HSC-derived activin is biologically active and unopposed by follistatin. Our in vivo and in vitro results demonstrate that activin-mediated events contribute to hepatic fibrogenesis and that follistatin attenuates early events in fibrogenesis by constraining HSC proliferation and inhibiting hepatocyte apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号