首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
Inbred mouse strains C57BL/6J (B6) (susceptible) and C3H/HeJ (C3H) (resistant) differ in atherosclerosis susceptibility due to a single gene, Ath-1. Plasma lipoproteins from female mice fed chow or an atherogenic diet displayed strain differences in lipoprotein particle sizes and apolipoprotein (apo) composition. High density lipoprotein (HDL) particle sizes were 9.5 +/- 0.1 nm for B6 and 10.2 +/- 0.1 nm for C3H. No major HDL particle size subclasses were observed. Plasma HDL level in the B6 strain was reduced by the atherogenic diet consumption while the HDL level in the resistant C3H mice was unaffected. The reduction in HDL in the B6 strain was associated with decreases in HDL apolipoproteins A-I(-34%) and A-II(-60%). The HDL apoC content in mice fed chow was two-fold higher in C3H than B6. Lipoproteins containing apolipoprotein B (VLDL, IDL, LDL) shifted from a preponderance of the B-100 (chow diet) to a preponderance of the B-48 (atherogenic diet). The LDL-particle size distribution was strain-specific with the chow diet but not genetically associated with the Ath-1 gene. In both strains on each diet, apolipoprotein E was largely distributed in the VLDL, LDL, and HDL fractions. The B6 strain became sixfold elevated in total lipoprotein E content which in the C3H strain was not significantly affected by diet. However, the C3H LDL apoE content was reduced. On both diets, the C3H strain exhibited apolipoprotein E levels comparable to the atherogenic diet-induced levels of the B6 mice.  相似文献   

2.
Synthetic low and high fat diets for the study of atherosclerosis in the mouse   总被引:16,自引:0,他引:16  
Diets currently used to produce atherosclerotic lesions in mice are often undefined and cause accumulation of fat in the liver and gallstone formation. Therefore, synthetic low and high fat diets of known composition were formulated in this study. A synthetic diet containing 50% sucrose, 15% cocoa butter, 1% cholesterol, and 0.5% sodium cholate was found to produce a depression in high density lipoprotein cholesterol (HDL-C) and an elevation of very low density lipoprotein (VLDL) and low density lipoprotein cholesterol (LDL-C) in the atherosclerosis-susceptible strain, C57BL/6J. This diet was able to consistently produce aortic lesions and led to a decrease in liver damage and gallstone formation. The synthetic low fat diet did not produce HDL-C levels as high as those found in mice fed chow, but resulted in similar VLDL/LDL-C levels. Lipoprotein and apolipoprotein parameters were compared in C57BL/6J and the atherosclerosis-resistant strain, C3H/HeJ, consuming the synthetic low fat or high fat diets. As reported earlier, when consuming a high fat diet C57BL/6J mice have significantly lower HDL-C and apoA-I levels than C3H/HeJ mice. Further analysis shows that the molar ratio of plasma HDL-C to apoA-I is significantly lower in C57BL/6J mice, suggesting that HDL in the susceptible strain has a lower cholesterol-carrying capacity. This conclusion is consistent with the observation that the HDL particle size is smaller for C57BL/6J mice than for C3H/HeJ. Both strains increased their apoE levels when fed the synthetic high fat diet, but C3H/HeJ mice had higher levels of apoE on both diets. The major response to consumption of the high fat diet for both strains was an increase in apoB-48 from 5 micrograms/ml on a low fat diet to 54 and 109 micrograms/ml for C57BL/6J and C3H/HeJ, respectively. ApoB-100 showed minimal response to the high fat diet. The defined high fat diet can be used to study atherosclerosis in the mouse since it produces aortic lesions but reduces or eliminates other pathological changes such as gallstone formation and liver damage.  相似文献   

3.
To gain insight on the impart of high-grain diets on liver metabolism in ruminants, we employed a comparative proteomic approach to investigate the proteome-wide effects of diet in lactating dairy goats by conducting a proteomic analysis of the liver extracts of 10 lactating goats fed either a control diet or a high-grain diet. More than 500 protein spots were detected per condition by two-dimensional electrophoresis (2-DE). In total, 52 differentially expressed spots (≥2.0-fold changed) were excised and analyzed using MALDI TOF/TOF. Fifty-one protein spots were successfully identified. Of these, 29 proteins were upregulated, while 22 were downregulated in the high-grain fed vs. control animals. Differential expressions of proteins including alpha enolase, elongation factor 2, calreticulin, cytochrome b5, apolipoprotein A-I, catalase, was verified by mRNA analysis and/or Western blotting. Database searches combined with Gene Ontology (GO) analysis and KEGG pathway analysis revealed that the high-grain diet resulted in altered expression of proteins related to amino acids metabolism. These results suggest new candidate proteins that may contribute to a better understanding of the signaling pathways and mechanisms that mediate liver adaptation to high-grain diet.  相似文献   

4.
The levels of apolipoprotein A-IV (apoA-IV) mRNA are regulated by dietary lipid in the liver of both the mouse and rat. Thirteen different inbred mouse strains were fed a high lipid diet, and the effect on apoA-IV liver mRNA levels was examined. It was found that each strain responded in one of two ways. Mice of four strains had higher liver apoA-IV mRNA levels as compared with syngeneic mice fed a normal chow diet. Mice of the other nine strains had decreased liver apoA-IV mRNA levels as compared with syngeneic mice fed a normal chow diet. Using F1 hybrids between mice from BALB/c, C3H, and C57BL/6 and between 129 and C57BL/6, as well as recombinant inbred strains derived from a cross between BALB/c and C57BL/6, we have shown that both the normal level of liver apoA-IV mRNA in the chow-fed mice and the lipid-dependent regulation of apoA-IV mRNA levels are controlled by cis-acting genetic elements. The apoA-IV mRNA levels in mice fed a normal diet varied dramatically among strains, with the largest difference (90-fold) being between the 129/J inbred strain and the C57BL/6J strain. In addition, we have examined the expression of apoA-IV during mouse development. ApoA-IV mRNA is expressed early in mouse liver (16 days postcoitum), whereas others have shown previously that rat liver apoA-IV mRNA is undetectable until 14 days after birth. ApoA-IV mRNA levels in the intestine and apoA-I mRNA levels in the liver and intestine, by contrast, mirror the pattern seen in the rat.  相似文献   

5.
Li J  Lu Z  Wang Q  Su Z  Bao Y  Shi W 《Physiological genomics》2012,44(6):345-351
Bglu3 is a quantitative trait locus for fasting glucose on distal chromosome 1 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate mouse intercrosses. The objective of this study was to characterize Bglu3 through construction and analysis of a congenic strain and identify underlying candidate genes. Congenic mice were constructed by introgressing a genomic region harboring Bglu3 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Mice were started with a Western diet at 6 wk of age and maintained on the diet for 12 wk. Gene expression in the liver was analyzed by microarrays. Congenic mice had significantly higher fasting glucose levels and developed more significant glucose intolerance compared with B6.apoE(-/-) mice on the Western diet. Microarray analysis revealed 336 genes to be differentially expressed in the liver of congenic mice. Further pathway analysis suggested a role for acute phase response signaling in regulating glucose intolerance. Apcs, encoding an acute phase response protein serum amyloid P (SAP), is located underneath the linkage peak of Bglu3. Multiple single nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Apcs. Apcs expression in the liver was significantly higher in congenic and C3H mice compared with B6 mice. The Western diet consumption led to a gradual rise in plasma SAP levels, which was accompanied by rising fasting glucose in both B6 and C3H apoE(-/-) mice. Expression of C3H Apcs in B6.apoE(-/-) mice aggravated glucose intolerance. Bglu3 is confirmed to be a locus affecting diabetes susceptibility, and Apcs is a probable candidate gene.  相似文献   

6.
7.
Park B  Jeong SK  Lee WS  Seong JK  Paik YK 《Proteomics》2004,4(11):3369-3375
Proteomic analysis of brain tissues obtained from two inbred mice, C57BL/6J (B6, an alcohol-preferring strain) and DBA/2J (D2, an alcohol-avoiding strain), that were orally administered 1.5 g/kg ethanol, was performed to investigate alcohol-responsive proteins. To analyze relationships of alcohol-responsive protein spots between B6 and D2 mice, we have developed a simple spot classification method (SCM) for the fully matched spot data sets produced by the Melanie 4 analysis software using the paired two-dimensional (2-D) gels of two strains over time. By applying SCM, 55 protein spots that were differentially expressed in brain tissue were classified into 16 patterns as mirror images (2x8 patterns), and additionally in an ordered fashion such as 'fast turn over' and 'slow turn over' forms, depending on the frequency of repetition and rate of changed expression profile in 2-D gels over time. Searching for any interaction proteins through databases of interacting proteins using the classified data set has led to the construction of a linkage map, which reveals the interrelationship of the alcohol-responsive proteins between different species. Thus, it is suggested that the different responses for alcohol between B6 and D2 may come from differences of the response rates and interactions of different variants of the alcohol-responsive protein family.  相似文献   

8.
To characterize the mouse bone marrow tissue proteome and investigate the response to radiation damage we took bone marrow before and after 4-Gy gamma-irradiation from mouse strains (C57BL/6 and CBA/Ca) that differ in their short-term and long-term radiation responses and analyzed extracellular proteins by high-resolution 2-DE. Twenty proteins were identified from 71 protein spots in both C57BL/6 and CBA/Ca. We detected significant differences between control and irradiated bone marrow and between genotypes and identified many of the changed proteins by MS. In C57BL/6, 27 spots were significantly different between control and irradiated samples. In CBA/Ca, 18 spots showed significant changes following irradiation. Proteins such as serum albumin, apolipoprotein A-I, ferritin, haptoglobin (Hp) and alpha-1-antitrypsin were changed in irradiated bone marrow of both mouse strains, reflecting an ongoing acute-phase reaction. Several other proteins including serotransferrin, neutrophil collagenase, peroxiredoxin 2 and creatine kinase M chain were changed specifically in an individual mouse strain. The proteomic approach makes an important contribution to characterizing bone marrow proteome and investigating the tissue response of bone marrow to radiation, assists in identifying genotype-dependent responses and provides support for the importance of microenvironmental factors contributing to the overall response.  相似文献   

9.
Mouse plasma from strains C57BL/6J and C3H/HeJ includes a high density lipoprotein (HDL) fraction containing apolipoprotein A-I which migrates in the prebeta region upon agarose gel electrophoresis, similar to the prebeta HDL previously reported in humans. This prebeta A-I lipoprotein species has a buoyant density of 1.080-1.210 g/ml and has two molecular weight species, 65,000 and 71,000. It is lipid-poor and deficient in apolipoprotein E. When mice are fed a high fat and high cholesterol diet, the quantity of prebeta A-I increases in both strains as determined by quantitative densitometry of agarose gel immunoblots. Prebeta A-I species are highly unstable in plasma at 37 degrees C. Initially (0-1 h) levels decreased and with further incubation (1-8 h) levels increased. Nondenaturing polyacrylamide gel electrophoresis (PAGE) demonstrated that the prebeta HDL formed during prolonged incubation (1-8 h) was identical in size to HDL in unincubated samples. The initial decrease of prebeta HDL observed during the first hour of incubation, phase I, was inhibited by DTNB, suggesting that phase I is dependent on lecithin:cholesterol acyltransferase (LCAT); however, the subsequent increase, phase II, was unaffected by DTNB and appears LCAT-independent. The prebeta A-I species formed in plasma containing DTNB after a 4-h incubation resulted in a polydisperse particle size distribution. The two strains, the atherosclerosis-susceptible C57BL/6 and -resistant C3H, displayed a similar elevation and induction of prebeta HDL during a dietary switch from laboratory chow to an atherogenic diet with a transient peak occurring at 7 days even when total HDL in the susceptible strain was greatly reduced.  相似文献   

10.
Both sexes of BALB/c and B6C3F1 mice were divided into test groups and fed either a purified diet (AIN-76A) or a natural ingredient diet (NIH-07) containing graded levels of 2-acetylaminofluorine (2-AAF) for 90 days. A large number of dead or moribund B6C3F1 males fed the AIN diet were removed from the study prematurely. AIN-fed B6C3F1 mice removed early as well as some sacrificed at the end of the study showed myocardial damage with hemorrhage. A much smaller number of BALB/c males fed the AIN diet also exhibited these signs while none of the females from either stock were affected. Mice having these lesions were confined largely to 2 of 5 treatment groups. Increased levels of serum aspartate aminotransferase (GOT) (P less than .01) occurred in the AIN-fed B6C3F1 male mice that were sacrificed, supporting the histopathological observation of myocardial damage. There was no other significant difference in the GOT between diets or 2-AAF doses. No environmental factors could be associated with the problem and microbiological and chemical analyses of the diets showed no convincing evidence of specific pathogenic organisms or nutritional deficiencies that might have caused these lesions. Extended storage (up to 4 months) and one batch of feed in particular seemed to be associated with mice having myocardial damage. These associations were highly strain and sex dependent and suggest that great care must be taken in the manufacture and handling of the diet. Furthermore, it seems likely that the diet may be marginally adequate for some strains of mice and may require modification before it will become generally useful.  相似文献   

11.
12.
ICR and C57BL/6J mice were fed experimental diets containing either a 2% fatty acid preparation rich in conjugated linoleic acid (CLA) or a preparation rich in linoleic acid and free of CLA for 21 days. CLA greatly decreased weights of white adipose tissue and interscapular brown adipose tissue in the two strains. CLA reduced mRNA levels of glucose transporter 4 (Glut 4) in white and brown adipose tissue of both strains. A CLA-dependent decrease in mRNA levels of peroxisome proliferator activated receptor (PPAR) gamma was seen in interscapular brown adipose tissue of both strains and in white adipose tissue of C57BL/6J but not ICR mice. Dietary CLA was found to cause a decrease in the mRNA levels of uncoupling protein (UCP) 1 in brown adipose tissue when the value was corrected for the expression of a house-keeping gene (beta-actin) in the two strains. Uncorrected values were, however, indistinguishable between the animals fed the CLA diet and CLA-free diet. UCP 3 expression in brown adipose tissue was much lower in mice fed the CLA diet than in those fed the control diet in both strains. In contrast, CLA greatly up-regulated the gene expression of UCP 2 in brown adipose tissue. Dietary CLA also increased UCP 2 mRNA level in skeletal muscle. It is apparent that dietary CLA decreases white and brown adipose tissue mass, accompanying changes in the gene expression of proteins regulating energy metabolism in white and brown adipose tissues, and skeletal muscle of mice.  相似文献   

13.
Jing L  Parker CE  Seo D  Hines MW  Dicheva N  Yu Y  Schwinn D  Ginsburg GS  Chen X 《Proteomics》2011,11(14):2763-2776
Due to the lack of precise markers indicative of its occurrence and progression, coronary artery disease (CAD), the most common type of heart diseases, is currently associated with high mortality in the United States. To systemically identify novel protein biomarkers associated with CAD progression for early diagnosis and possible therapeutic intervention, we employed an iTRAQ‐based quantitative proteomic approach to analyze the proteome changes in the plasma collected from a pair of wild‐type versus apolipoprotein E knockout (APOE?/?) mice which were fed with a high fat diet. In a multiplex manner, iTRAQ serves as the quantitative ‘in‐spectra’ marker for ‘cross‐sample’ comparisons to determine the differentially expressed/secreted proteins caused by APOE knock‐out. To obtain the most comprehensive proteomic data sets from this CAD‐associated mouse model, we applied both MALDI and ESI‐based mass spectrometric (MS) platforms coupled with two different schemes of multidimensional liquid chromatography (2‐D LC) separation. We then comparatively analyzed a series of the plasma samples collected at 6 and 12 wk of age after the mice were fed with fat diets, where the 6‐ or 12‐wk time point represents the early or intermediate phase of the fat‐induced CAD, respectively. We then categorized those proteins showing abundance changes in accordance with APOE depletion. Several proteins such as the γ and β chains of fibrinogen, apolipoprotein B, apolipoprotein C‐I, and thrombospondin‐4 were among the previously known CAD markers identified by other methods. Our results suggested that these unbiased proteomic methods are both feasible and a practical means of discovering potential biomarkers associated with CAD progression.  相似文献   

14.
C57BL/6 (B6) and C3H/HeJ (C3H) are two commonly used mouse strains that differ markedly in atherosclerosis susceptibility. In this study, we determined plaque formation after removal of the endothelium in the two strains carrying the mutant apolipoprotein E gene (apoE(-/-)). At 10 weeks of age, male B6.apoE(-/-) and C3H.apoE(-/-) mice underwent endothelial denudation of the left common carotid artery. Two weeks after injury, B6.apoE(-/-) mice developed significantly larger neointimal lesions in the vessel than their C3H.apoE(-/-) counterparts, although they had comparable plasma cholesterol levels on a chow diet. Feeding of a Western diet aggravated lesion formation in both strains, but the increase was more dramatic in B6.apoE(-/-) mice than in C3H.apoE(-/-) mice. Immunohistochemical and histological analyses demonstrated the presence of macrophage foam cells in neointimal lesions. We then compared neointimal growth in F1 mice reconstituted with bone marrow from B6.apoE(-/-) and C3H.apoE(-/-) mice. No significant lesions were observed 2 weeks after endothelial denudation in the mice reconstituted with bone marrow from either donor. Thus, these data indicate that foam cell formation contributes to neointimal growth in the hyperlipidemic apoE(-/-) model and that neither endothelial cells nor blood cells alone explain the dramatic difference between B6 and C3H mice in plaque formation.  相似文献   

15.
16.
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA?/? mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA?/? animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed.SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.  相似文献   

17.
Divalent metal transporter I (DMT1) is thought to be involved in transport of iron across the apical cell membrane of villus duodenal cells. To determine its role in hereditary hemochromatosis (HH), we used beta2-microglobulin knockout (B2M-/-) mice that accumulate iron as in HH. The B2M-/- and control C57BL/6 (B2M+/+) mice were fed diets with different iron contents. Increasing the iron availability increased plasma iron levels in both B2M+/+ and B2M-/- mice. Reducing the iron availability decreased the plasma iron concentration in B2M+/+ mice but was without effect on plasma iron in B2M-/- mice. DMT1 was not detectable in mice fed normal or iron-loaded diets when using immunohistochemistry. In Western blots, however, the protein was consistently observed regardless of the dietary regimen. DMT1 expression was increased to the same extent in B2M+/+ and B2M-/- mice when fed an iron-poor diet. In both strains of mice fed an iron-poor diet, DMT1 was evenly distributed in the differentiated enterocytes from the base to the tip of the villi but was absent from the crypts of Lieberkühn. These data suggest that the observed effects were due to the state of iron deficiency in mucosal cells rather than genetic defect.  相似文献   

18.
This study was designed to investigate whether chlorella supplementation may ameliorate oxidative stress and nuclear factor kappa B (NFkappaB) activation in peritoneal macrophages and liver of C57BL/6 mice fed on an atherogenic diet. The animals were maintained on an atherogenic diet (control), or an atherogenic diet supplemented with 3% (w/w) chlorella or 5% (w/w) chlorella for 12 wks. The plasma and hepatic lipid levels were not affected by chlorella supplementation. Hepatic thiobarbituric acid-reactive substances and superoxide anion production in peritoneal macrophages were significantly lower in the 5% chlorella group (p<0.05), but the glutathione level was not altered by chlorella supplementation. The hepatic antioxidative enzyme activities of Cu, Zn-superoxide dismutase and catalase were higher in the mice fed on the 5% chlorella diet (p<0.05). The plasma aspartate aminotransferase activity was lower in the mice fed on the chlorella-containing diets (p<0.05), whereas the alanine aminotransferase activity was not affected by chlorella supplementation. The NFkappaB nuclear binding activities of peritoneal macrophages and liver were significantly lower in the 5% chlorella groups (p<0.05). These results suggest that chlorella supplementation may attenuate oxidative stress by reducing reactive oxygen production and increasing antioxidative processes, thus suppressing inflammatory mediator activation in peritoneal macrophages and liver.  相似文献   

19.
The C57BL/6ByJ (B6By) mouse strain is resistant to diet-induced hypercholesterolemia and atherosclerosis, despite its near genetic identity with the atherosclerosis-susceptible C57BL/6J (B6J) strain. We previously identified a genetic locus, Diet1, which is responsible for the resistant phenotype in B6By mice. To investigate the function of Diet1, we compared mRNA expression profiles in the liver of B6By and B6J mice fed an atherogenic diet using a DNA microarray. These studies revealed elevated expression levels in B6By liver for key bile acid synthesis proteins, including cholesterol 7alpha-hydroxylase and sterol-27-hydroxylase, and the oxysterol nuclear receptor liver X receptor alpha. Expression levels for several other genes involved in bile acid metabolism were subsequently found to differ between B6By and B6J mice, including the bile acid receptor farnesoid X receptor, oxysterol 7alpha-hydroxylase, sterol-12alpha-hydroxylase, and hepatic bile acid transporters on both sinusoidal and canalicular membranes. The overall expression profile of the B6By strain suggests a higher rate of bile acid synthesis and transport in these mice. Consistent with this interpretation, fecal bile acid excretion is increased 2-fold in B6By mice, and bile acid levels in blood and urine are elevated 3- and 18-fold, respectively. Genetic analysis of serum bile acid levels revealed co-segregation with Diet1, indicating that this locus is likely responsible for both increased bile acid excretion and resistance to hypercholesterolemia in B6By mice.  相似文献   

20.
Chylomicrons labeled with [3H]cholesterol and [14C]triglyceride fatty acids were lipolyzed by hepatic lipase (HL) in vitro and then injected intravenously into normal mice fed low- or high-fat diets, and into apolipoprotein (apo) E-deficient mice. In normal mice fed the high-fat diet and injected with non-lipolyzed chylomicrons, the plasma clearance and hepatic uptake of the resulting [3H]cholesterol-labeled remnants was markedly inhibited. In contrast, chylomicrons lipolyzed by HL were taken up equally rapidly by the livers of mice fed the low- and high-fat diets. The removal of non-lipolyzed chylomicrons lacking apoE from the plasma of apoE-deficient mice was inhibited, but not the removal of chylomicrons lipolyzed by HL. Pre-injection of lactoferrin into normal mice inhibited the plasma clearance of both non-lipolyzed chylomicrons and chylomicrons lipolyzed by HL. The removal of HL from the surface of the lipolyzed particles by proteolytic digestion did not affect their rapid uptake, indicating that the hepatic recognition of the lipoproteins was not mediated by HL. These observations support previous findings that phospholipolysis of chylomicrons by hepatic lipase generates remnant particles that are rapidly cleared from circulation by the liver. They also support the concept that chylomicron remnants can be taken up by the liver by an apolipoprotein E-independent mechanism. We hypothesize that this mechanism is modulated by the remnant phospholipids and that it may involve their interaction with a phospholipid-binding receptor on the surface of hepatocytes such as the class B scavenger receptor BI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号