首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although an elevated level of focal adhesion kinase (FAK) has been observed in a variety of invasive human tumors, forced expression of FAK alone in cultured cells does not cause them to exhibit transformed phenotypes. Therefore, the role of FAK in oncogenic transformation remains unclear. In this study, we have demonstrated that FAK overexpression in Madin-Darby canine kidney epithelial cells rendered them susceptible to transformation by hepatocyte growth factor (HGF). Using various FAK mutants, we found that the simultaneous bindings of Src and p130(cas) were required for FAK to potentiate cell transformation. Expression of FAK-related nonkinase, kinase-deficient Src, or the Src homology 3 domain of p130(cas), which respectively serve as dominant negative versions of FAK, Src, and p130(cas), apparently reversed the transformed phenotypes of FAK-overexpressed cells upon HGF stimulation. Moreover, FAK overexpression was able to enhance HGF-elicited signals, leading to sustained activation of ERK, JNK, and AKT, which could be prevented by the expression of the Src homology 3 domain of p130(cas). Taken together, our results indicate that the synergistic effect of FAK overexpression and HGF stimulation leads to cell transformation and implicate a critical role of p130(cas) in this process.  相似文献   

2.
PTP-S4/TC48 protein tyrosine phosphatase is localized in the nuclear and cytoplasmic membranes. To investigate the role of PTP-S4 in cell growth, adhesion, and transformation, normal and a catalytically inactive mutant form of this phosphatase were expressed in polyoma virus-transformed F111 fibroblast cell line, PyF. Expression of mutant PTP-S4 in PyF cells resulted in strong inhibition of anchorage-independent growth in soft agar but had no significant effect on growth in liquid culture. Tumor formation in nude mice was also reduced by mutant PTP-S4. Expression of normal PTP-S4 in PyF cells significantly increased anchorage-independent cell growth and tumor formation in nude mice. Overexpression of catalytically inactive mutant of PTP-S2/TC45 (a splice variant of PTP-S4 that is nuclear) did not inhibit anchorage-independent growth of PyF cells. Mutant PTP-S4-expressing cells were inhibited in adhesion and spreading on tissue culture plates compared to control cells. Expression of mutant PTP-S4 in PyF cells reduced the levels of cyclin D1 and cyclin A mRNA, whereas cyclin D2 mRNA level was not affected significantly. Expression of antisense cyclin D1 strongly inhibited anchorage-independent growth. Inhibition of anchorage-independent growth by mutant PTP-S4 was overcome to a large extent by coexpression of cyclin D1. These results suggest that mutant PTP-S4 inhibits anchorage-independent growth and adhesion of polyoma virus-transformed cells by interfering with the normal function of PTP-S4 upstream of cyclin D1 gene expression.  相似文献   

3.
Protein tyrosine phosphorylation is a ubiquitous, fundamental biochemical mechanism that regulates essential eukaryotic cellular functions. The level of tyrosine phosphorylation of specific proteins is finely tuned by the dynamic balance between protein tyrosine kinase and protein tyrosine phosphatase activities. Hepatocyte growth factor receptor (also known as Met), a receptor protein tyrosine kinase, is a major regulator of proliferation, migration, and survival for many epithelial cell types. We report here that receptor-type protein tyrosine phosphatase β (RPTP-β) specifically dephosphorylates Met and thereby regulates its function. Expression of RPTP-β, but not other RPTP family members or catalytically inactive forms of RPTP-β, reduces hepatocyte growth factor (HGF)-stimulated Met tyrosine phosphorylation in HEK293 cells. Expression of RPTP-β in primary human keratinocytes reduces both basal and HGF-induced Met phosphorylation at tyrosine 1356 and inhibits downstream MEK1/2 and Erk activation. Furthermore, shRNA-mediated knockdown of endogenous RPTP-β increases basal and HGF-stimulated Met phosphorylation at tyrosine 1356 in primary human keratinocytes. Purified RPTP-β intracellular domain preferentially dephosphorylates purified Met at tyrosine 1356 in vitro. In addition, the substrate-trapping mutant of RPTP-β specifically interacts with Met in intact cells. Expression of RPTP-β in human primary keratinocytes reduces HGF induction of VEGF expression, proliferation, and motility. Taken together, the above data indicate that RPTP-β is a key regulator of Met function.  相似文献   

4.
5.
6.
We identified the IIIb C2 epithelial cell-specific splice variant of fibroblast growth factor receptor 2 (FGFR2 IIIb C2) receptor tyrosine kinase in a screen for activated oncogenes expressed in T-47D human breast carcinoma cells. We found FGFR2 IIIb C2 expression in breast carcinoma cell lines and, additionally, expression of the mesenchymal-specific FGFR2 IIIc splice variant in invasive breast carcinomas. FGFR2 IIIc expression was associated with loss of epithelial markers and gain of mesenchymal markers. Although FGFR2 IIIb is expressed in epithelial cells, previous studies on FGFR2 IIIb transformation have focused on NIH 3T3 fibroblasts. Therefore, we compared the transforming activities of FGFR2 IIIb C2 in RIE-1 intestinal cells and several mammary epithelial cells. FGFR2 IIIb C2 caused growth transformation of epithelial cells but morphologic transformation of only NIH 3T3 cells. FGFR2 IIIb C2-transformed NIH 3T3, but not RIE-1 cells, showed persistent activation of Ras and increased cyclin D1 protein expression. NIH 3T3 but not RIE-1 cells express keratinocyte growth factor, a ligand for FGFR2 IIIb C2. Ectopic treatment with keratinocyte growth factor caused FGFR2 IIIb C2-dependent morphologic transformation of RIE-1 cells, as well as cyclin D1 up-regulation, indicating that both ligand-independent and stromal cell-derived, ligand-dependent mechanisms contribute to RIE-1 cell transformation. Our results support cell context distinct mechanisms of FGFR2 IIIb C2 transformation.  相似文献   

7.
The receptor insulin substrate 1 protein (IRS-1) is a specific substrate for insulin receptor tyrosine kinase. Expression and tyrosyl phosphorylation of IRS-1 play an important role during normal hepatocyte growth, and the gene is overexpressed in hepatocellular carcinoma tissue. We determined if IRS-1 overexpression directly contributes to cellular transformation. The human IRS-1 gene was subcloned into a mammalian expression vector driven by the cytomegalovirus early promoter. NIH 3T3 cells transiently transfected with this vector subsequently developed transformed foci. Several stably transfected cell lines were established, and they grew efficiently under low-serum conditions and formed colonies when plated in soft agar. Cell lines overexpressing IRS-1 displayed increased tyrosyl phosphorylation of IRS-1 and association with Grb2 but not with the p85 subunit of phosphatidylinositol 3' kinase. Since Grb2 is a component of the son-of-sevenless-Ras pathway and upstream in the mitogen-activated protein kinase (MAPK) cascade, enzymatic activities of the major components of this cascade, such as MAPK kinase and MAPK were evaluated and found to be substantially increased in three independent cell lines with IRS-1 protein overexpression. Such cells, when injected into nude mice, were highly tumorigenic, and there may be a correlation between the degree of MAPK activation and tumor growth rate. This report describes the generation of a transformed phenotype by overexpression of a molecule without a catalytic domain far upstream in the signal transduction cascade and suggests that prolonged activation of MAPKs by this mechanism may be one of the molecular events related to hepatocellular transformation.  相似文献   

8.
9.
Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK.  相似文献   

10.
Extracellular domains of the transmembrane glycoprotein, neuropilin-1 (Np1), specifically bind an array of factors and co-receptors including class-3 semaphorins (Sema3a), vascular endothelial growth factor (VEGF), hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-β 1 (TGF-β1), and fibroblast growth factor2 (FGF2). Np1 may have a role in immune response, tumor cell growth, and angiogenesis, but its relative expression in comparison to its co-primary receptors, VEGF and Sema3a, is not known. In this study we determined the mRNA expression of Np1 and its co-receptors, VEGF and Sema3a, and the ratio of VEGF/Sema3a in different human and rodent cell lines. Expression of Np1, VEGF and Sema3a is very low in cells derived from normal tissues, but these proteins are highly expressed in tumor-derived cells. Furthermore, the ratio of VEGF/Sema3a is highly variable in different tumor cells. The elevated mRNA expression of Np1 and its putative receptors in tumor cells suggests a role for these proteins in tumor cell migration and angiogenesis. As different tumor cells exhibit varying VEGF/Sema3a ratios, it appears that cancer cells show differential response to angiogenic factors. These results bring to light the individual variation among the cancer-related genes, Np1, VEGF, and Sema3a, and provide an important impetus for the possible personalized therapeutic approaches for cancer patients.  相似文献   

11.
Expression of the serine protease HtrA1 is decreased or abrogated in a variety of human primary cancers, and higher levels of HtrA1 expression are directly related to better response to chemotherapeutics. However, the precise mechanisms leading to HtrA1 down regulation during malignant transformation are unclear. To investigate HtrA1 gene regulation in breast cancer, we characterized expression in primary breast tissues and seven human breast epithelial cell lines, including two non-tumorigenic cell lines. In human breast tissues, HtrA1 expression was prominent in normal ductal glands. In DCIS and in invasive cancers, HtrA1 expression was greatly reduced or lost entirely. HtrA1 staining was also reduced in all of the human breast cancer cell lines, compared with the normal tissue and non-tumorigenic cell line controls. Loss of HtrA1 gene expression was attributable primarily to epigenetic silencing mechanisms, with different mechanisms operative in the various cell lines. To mechanistically examine the functional consequences of HtrA1 loss, we stably reduced and/or overexpressed HtrA1 in the non-tumorigenic MCF10A cell line. Reduction of HtrA1 levels resulted in the epithelial-to-mesenchymal transition with acquisition of mesenchymal phenotypic characteristics, including increased growth rate, migration, and invasion, as well as expression of mesenchymal biomarkers. A concomitant decrease in expression of epithelial biomarkers and all microRNA 200 family members was also observed. Moreover, reduction of HtrA1 expression resulted in activation of the ATM and DNA damage response, whereas overexpression of HtrA1 prevented this activation. Collectively, these results suggest that HtrA1 may function as a tumor suppressor by controlling the epithelial-to-mesenchymal transition, and may function in chemotherapeutic responsiveness by mediating DNA damage response pathways.  相似文献   

12.
We studied the effect of two members of the epidermal growth factor (EGF) family—amphiregulin and heparin‐binding EGF‐like growth factor (HB‐EGF)—on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver‐colonizing potential. The effect of amphiregulin and HB‐EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte‐derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB‐EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte‐derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB‐EGF synergistically acted with hepatocyte‐derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor‐α (TGF‐α) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte‐derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF‐α mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB‐EGF stimulated expression of erb‐B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte‐derived ECM, amphiregulin inhibited erb‐B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site‐specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte‐derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM. J. Cell. Biochem. 76:332–340, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Cysteine-rich protein 61 (Cyr61) is a member of a family of growth factor-inducible immediate-early genes. It regulates cell adhesion, migration, proliferation, and differentiation and is involved in tumor growth. In our experiments, the role of Cyr61 in non-small cell lung cancer (NSCLC) was examined. Expression of Cyr61 mRNA was decreased markedly in four of five human lung tumor samples compared with their normal matched lung samples. NSCLC cell lines NCI-H520 and H460, which have no endogenous Cyr61, formed 60-90% fewer colonies after being transfected with a Cyr61 cDNA expression vector than cells transfected with the same amount of empty vector. After stable transfection of a Cyr61 cDNA expression vector, proliferation of both H520-Cyr61 and H460-Cyr61 sublines decreased remarkably compared with the cells stably transfected with empty vector. The addition of antibody against Cyr61 partially rescued the growth suppression of both H520-Cyr61 and H460-Cyr61 cells. Cell cycle analysis revealed that both H520-Cyr61 and H460-Cyr61 cells developed G(1) arrest, prominently up-regulated expression of p53 and p21(WAF1), and had decreased activity of cyclin-dependent kinase 2. The increase of pocket protein pRB2/p130 was also detected in these cells. Notably, both of the Cyr61-stably transfected lung cancer cell lines developed smaller tumors than those formed by the wild-type cells in nude mice. Taken together, we conclude that Cyr61 may play a role as a tumor suppressor in NSCLC.  相似文献   

14.
p21-activated protein kinase (PAK) serine/threonine kinases are important effectors of Rho family GTPases and have been implicated in the regulation of cell morphology and motility, as well as in cell transformation. To further investigate the possible involvement of PAK kinases in tumorigenesis, we analyzed the expression of several family members in tumor cell lines. Here we demonstrate that PAK4 is frequently overexpressed in human tumor cell lines of various tissue origins. We also have identified serine (Ser-474) as the likely autophosphorylation site in the kinase domain of PAK4 in vivo. Mutation of this serine to glutamic acid (S474E) results in constitutive activation of the kinase. Phosphospecific antibodies directed against serine 474 detect activated PAK4 on the Golgi membrane when PAK4 is co-expressed with activated Cdc42. Furthermore, expression of the active PAK4 (S474E) mutant has transforming potential, leading to anchorage-independent growth of NIH3T3 cells. A kinase-inactive PAK4 (K350A,K351A), on the other hand, efficiently blocks transformation by activated Ras and inhibits anchorage-independent growth of HCT116 colon cancer cells. Taken together, our data strongly implicate PAK4 in oncogenic transformation and suggest that PAK4 activity is required for Ras-driven, anchorage-independent growth.  相似文献   

15.
Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product.  相似文献   

16.
Toll-like receptors expressed in tumor cells: targets for therapy   总被引:2,自引:1,他引:1  
Toll-like receptors (TLRs), mainly expressing in human immune related cells and epithelial cells, play an essential role in the host defense against microbes by recognizing conserved bacterial molecules. Recently, the expression or up-regulation of TLRs has been detected in many tumor cell lines or tumors, especially epithelial derived cancers. Although the TLR profile varies on different tumor cells, the current evidences indicate that the expression of TLRs is functionally associated with tumor progression. TLR expression may promote malignant transformation of epithelial cells. Engagement of TLRs increases tumor growth and tumor immune escape, and induces apoptosis resistance and chemoresistance in some tumor cells. These findings demonstrate that TLR is a promising target for the development of anticancer drugs and make TLR agonists or antagonists the potential agents for tumor therapy.  相似文献   

17.
Nanbo A  Yoshiyama H  Takada K 《Journal of virology》2005,79(19):12280-12285
Our recent findings demonstrated that the Epstein-Barr virus-encoding small nonpolyadenylated RNA (EBER) confers resistance to various apoptotic stimuli and contributes to the maintenance of malignant phenotypes in Burkitt's lymphoma. In this study we investigated the role of EBER in the human epithelial Intestine 407 cell line, which is known to be susceptible to Fas (Apo1/CD95)-mediated apoptosis. Fas, a member of the tumor necrosis factor receptor family, transduces extracellular signals to the apoptotic cellular machinery, leading to cell death. Transfection of the EBER gene into Intestine 407 cells significantly protected the cells from Fas-mediated apoptosis, whereas EBER-negative cell lines underwent apoptosis after Fas treatment. EBER bound double-stranded RNA-dependent protein kinase R (PKR), an interferon-inducible serine/threonine kinase, and abrogated its kinase activity. Moreover, expression of the catalytically inactive dominant-negative PKR provided resistance to Fas-induced apoptosis. Expression of EBER or dominant-negative PKR also inhibited the cleavage of poly(ADP-ribose) polymerase, a mediator of the cellular response to DNA damage, downstream of the Fas-mediated apoptotic pathway. These results in combination indicate that EBER confers resistance to Fas-mediated apoptosis by blocking PKR activity in Intestine 407 cells, consistent with the idea that EBER contributes to the maintenance of epithelioid malignancies.  相似文献   

18.
Oncogenic transformation confers resistance to chemotherapy through a variety of mechanisms, including suppression of apoptosis, increased drug metabolism, and modification of target proteins. Oncogenic epidermal growth factor receptor family members, including EGFRvIII and HER2, are expressed in a broad spectrum of human malignancies. Cell lines transfected with EGFRvIII and HER2 are more resistant to paclitaxel-mediated cytotoxicity, and tubulin polymerization induced by paclitaxel is suppressed compared with cells expressing wild type epidermal growth factor receptor. Because differential expression of beta-tubulin isotypes has been proposed to modulate paclitaxel resistance, we analyzed beta-tubulin isotypes expressed in cell lines transfected with different oncogenes. EGFRvIII- and HER2-expressing cells demonstrated equivalent total beta-tubulin protein compared with cells transfected with wild type receptor or untransfected controls. EGFRvIII-expressing cells demonstrated increases in class IVa (2.5-fold) and IVb (3.1-fold) mRNA, and HER2-expressing cells showed increases in class IVa (2. 95-fold) mRNA. Expression of oncogenic Ha-Ras did not change class IV RNA levels significantly. Inhibition of EGFRvIII kinase activity using a mutant allele with an inactivating mutation in the kinase domain decreased expression of class IVa by 50% and partially reversed resistance to paclitaxel. Expression of oncogenic epidermal growth factor receptor family members is associated with modulation of both beta-tubulin isotype expression and paclitaxel resistance in cells transformed by expression of the receptor. This effect on tubulin expression may modulate drug resistance in human malignancies that express these oncogenes.  相似文献   

19.
20.
A recently described splice variant of CD44 expressed in metastasizing cell lines of rat tumors has been shown to confer metastatic potential to a non-metastasizing rat pancreatic carcinoma cell line and to non- metastasizing sarcoma cells. Homologues of this variant as well as several other CD44 splice variants are also expressed at the RNA level in human carcinoma cell lines from lung, breast, and colon, and in immortalized keratinocytes. Using antibodies raised against a bacterial fusion protein encoded by variant CD44 sequences, we studied the expression of variant CD44 glycoproteins in normal human tissues and in colorectal neoplasia. Expression of CD44 variant proteins in normal human tissues was readily found on several epithelial tissues including the squamous epithelia of the epidermis, tonsils, and pharynx, and the glandular epithelium of the pancreatic ducts, but was largely absent from other epithelia and from most non-epithelial cells and tissues. In human colorectal neoplasia CD44 variant proteins, including homologues of those which confer metastatic ability to rat tumors, were found on all invasive carcinomas and carcinoma metastases. Interestingly, focal expression was also observed in adenomatous polyps, expression being related to areas of dysplasia. The distribution of the CD44 variants in human tissues suggests that they play a role in a few restricted differentiation pathways and that in colorectal tumors one of these pathways has been reactivated. The finding that metastasis-related variants are already expressed at a relatively early stage in colorectal carcinogenesis and tumor progression, i.e., in adenomatous polyps, suggests the existence of a yet unknown selective advantage linked to CD44 variant expression. The continued expression in metastases would be compatible with a role in the metastatic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号