首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
Summary The red cell pH of lamprey (Lampetra fluviatilis) was measured using the DMO method (based on the passive distribution of the wead acid, DMO, across the red cell membrane). The measured red cell pH was higher than the pH of the incubation medium throughout the pH range (7.2–8.2) studied, and higher than the red cell pH calculated from the chloride distribution ratio. Treatment of cells with the metabolic inhibitors 2,4-dinitrophenol or KCN caused a drop in the red cell pH to values lower than the pH of incubation medium, and abolished the difference between the measured red cell pH and the pH calculated from the chloride distribution ratio. These data strongly suggest that the proton gradient across lamprey red cell membrane is actively maintained. Acid extrusion from lamprey red cells may require sodium, as indicated by the observation that when choline was substituted for sodium in the incubation medium, the intracellular pH decreased significantly.  相似文献   

3.
Physiological and immuno-blotting experiments were used to determine whether the red blood cell membrane of a primitive vertebrate, the sea lamprey Petromyzon marinus, contained a counterpart similar to the vertebrate anion exchange protein known as AE1 or band 3. Results of the physiological experiments which measured CO2 production after adding H14CO 3 - to the extracellular saline, indicated significant transmembrane bicarbonate movement in lamprey blood which unlike that in most vertebrates, was insensitive to inhibition by 4,4 diisothiocyanatostilbene-2,2 disulfonic acid. The present study also showed that lamprey red blood cells possess acetazolamide-sensitive carbonic anhydrase which is an important component of CO2 production by vertebrate red blood cells. Polyclonal immunoglobulins against a 12 amino acid domain in the C-terminus of the mouse AE1 recognized a trout red blood cell membrane protein with a relative molecular mass of 97 kDa, but failed to immunoreact with any membrane proteins from the red blood cells of lamprey. Antibodies against trout AE1 immunoreacted with trout red blood cell membrane proteins of approximately 97 kDa, 200 kDa and >200 kDa. Interestingly, only a 200-kDa membrane protein from the red blood cells of the primitive lamprey immunoreacted with the trout anti-AE1 immunoglobulin proteins. Therefore, lamprey red blood cells appear to possess an AE1-like protein that may be physiologically different than that in most other vertebrates.  相似文献   

4.
1. Bicarbonate ions stimulate the transport of serine and alanine into isolated hepatocytes. 2. The effect of bicarbonate is to increase the Vmax. of the transport process without changing the apparent Km. 3. The intracellular pH was estimated from the distribution of the weak base methylamine and the weak acid 5,5'-dimethyloxazolidine-2,4-dione (DMO) across the plasma membrane. 4. The addition of bicarbonate to a cell suspension caused the internal pH to become more acid. 5. The initial rate of serine, alanine and glycine transport was a linear function of the initial difference in pH across the membrane. 6. It is concluded that bicarbonate activates the transport of these amino acids primarily by increasing the pH difference across the plasma membrane. 7. It is suggested that the uptake of serine together with Na+ ions occurs in exchange for H+ ions, which are translocated outwards on the same carrier system. Some preliminary evidence consistent with this model is presented.  相似文献   

5.
The kinetics of bicarbonate-chloride exchange across the human red cell membrane was studied by following the time course of extracellular pH in a stopped-flow rapid-reaction apparatus during transfer of H+ into the cell by the CO2 hydration-dehydration cycle, under conditions where the rate of the process was determined by HCO3--Cl- exchange flux across the membrane. The flux of bicarbonate increased linearly with [HCO3-] gradient from 0.6 to 20 mM across the red cell membrane at both 37 degrees C and 2 degrees C, and decreased as transmembrane potential was increased by decreasing extracellular [Cl-]. An Arrhenius plot of the rate constants for the exchange indicates that the Q10 is strongly dependent on temperature, being about 1.7 between 24 degrees C and 42 degrees C and about 7 between 2 degrees C and 12 degrees C. These data agree well with the published values for Q10 of 1.2 between 24 degrees C and 40 degrees C and of 8 between 0 degrees C and 10 degrees C. The results suggest that different processes may determine the rate of HCO3- -Cl- exchange at low vs. physiological temperatures, and that the functional (and/or structural) properties of the red cell membrane vary markedly with temperature.  相似文献   

6.
Investigations of corneal endothelium were made to resolve the apparent contradiction of the presence of sodium/bicarbonate cotransporter (NBC) in fresh and cultured cells and NBC's reported absence in isolated plasma membrane vesicles. Gradient-driven ion fluxes into the vesicles were measured. Short-term incubations (0-30 s) showed the presence of a bicarbonate-dependent inward sodium flux (BDSF), which was active when the insides of the vesicles were preloaded with chloride ions. The BDSF was absent if chloride was present only externally to the vesicles. Chloride at concentrations between 30 and 40 mM inside the vesicle had its maximum effect on BDSF. Other anions (acetate, thiocyanate, or gluconate) inside the vesicles did not mimic the chloride effect. Associated with the net inward sodium flux was a net inward bicarbonate flux. Hill plots of sodium influx with respect to external bicarbonate concentrations indicated that the stoichiometry of the net transfer was 1.7 +/- 0.2 (mean +/- standard error, n = 5) bicarbonate ions for each sodium ion transported. There was no net chloride flux found across the membrane vesicles. The finding of a novel chloride-activated NBC activity fully resolves the apparent contradiction between whole-cell and membrane vesicle preparations.  相似文献   

7.
Chloride fluxes across the cytoplasmic membrane of Acholeplasma laidlawii were studied by using the chloride sensitive fluorescent dye, 6-methoxy-N-(sulfopropyl)quinolinium. Chloride was found to penetrate the membrane passively. Chloride flux was dependent upon the transmembrane electric potential.  相似文献   

8.
The pancreas is a 'leaky' epithelium and secretes a juice in which sodium and potassium have concentrations similar to those of plasma. The characteristic features of the secretion are its isosmolality and its high bicarbonate concentration. It is the latter that has attracted considerable attention. Secretion in the isolated cat pancreas is directly proportional to the bicarbonate concentration in the nutrient fluid. The ability of the gland to secrete weak acids has led to the view that because of the very different chemical nature of the anions, it is most likely that it is a component common to all buffers, the proton, that is subject to active transport. This is supported by the decrease in pH and the increase in rho CO2 of the venous effluent when secretion occurs and the sensitivity of secretion to the pH of the nutritional extracellular fluid. It is proposed that the cellular mechanisms are as follows: CO2 diffuses into the cell and is hydrated to carbonic acid under the influence of carbonic anhydrase. The bicarbonate ion so formed diffused into the ductular lumen and the proton is transported backwards through the epithelium with a proton pump (Mg2+ -ATPase) provisionally located in the luminal membrane and a hydrogen-sodium exchange carrier located in the basolateral membrane. Energy for the latter process is derived from the sodium gradient between extracellular fluid and cell. This gradient is maintained by a (Na+ + K+)-ATPase also located in the basolateral membrane. Chloride appears to be transported partly through a chloride-bicarbonate exchange mechanism but largely passively together with a large sodium and potassium component through the paracellular pathway. Osmotic equilibrium is likely to occur in the small ductules.  相似文献   

9.
In order to gain insight into the early evolution of carbonic-anhydrase (CA) isozymes in vertebrates, the main objective of the present study was to determine whether the hearts of an ancient vertebrate species, Petromyzon marinus, possess a membrane-bound CA isozyme. Since a significant amount of CA activity appeared to be strongly associated with the heart membrane fraction after differential centrifugation and washing, further experiments were conducted to examine the inhibitor properties of the CA from the membrane fraction in comparison with lamprey cytoplasmic CA from the red blood cell (rbc) fraction. These experiments showed that the inhibitor properties of the CA from the heart membranes were significantly different from those of the cytoplasmic CA from lamprey rbcs. A final series of experiments showed that the membrane-bound CA in the lamprey heart is not anchored via a glycosylphosphatidylinositol (GPI) linkage. Taken together, the results of these studies indicate that a membrane-bound CA does appear to be present in the hearts of lamprey, but the properties of the membrane-bound CA isozyme in these ancient vertebrates appear to differ from those in more recently evolved groups.Abbreviations Az acetazolamide - CA carbonic anhydrase - GPI glycosylphosphatidylinositol - PI-PLC phosphatidylinositol specific phospholipase C - Rbc red blood cell  相似文献   

10.
Chloride self-exchange was determined by measuring the rate of 36Cl efflux from human red blood cells at pH 7.2 (0 degrees C) in the presence of fluoride, bromide, iodide, and bicarbonate. The chloride concentration was varied between 10--400 mM and the concentration of other halides and bicarbonate between 10--300 mM. Chloride equilibrium flux showed saturation kinetics. The half-saturation constant increased and the maximum flux decreased in the presence of halides and bicarbonate: the inhibition kinetics were both competitive and noncompetitive. The competitive and the noncompetitive effects increased proportionately in the sequence: fluoride less than bromide less than iodide. The inhibitory action of bicarbonate was predominantly competitive. The noncompetitive effect of chloride (chloride self-inhibition) on chloride transport was less dominant at high inhibitor concentrations. Similarly, the noncompetitive action of the inhibitors was less dominant at high chloride concentrations. The results can be described by a carrier model with two anion binding sites: a transport site, and a second site which modifies the maximum transport rate. Binding to both types of sites increases proportionately in the sequence: fluoride less than chloride less than bromide less than iodide.  相似文献   

11.
Intestinal epithelial membrane transport of L-lactic acid was characterized using rabbit jejunal brush-border membrane vesicles (BBMVs). The uptake of L-[(14)C]lactic acid by BBMVs showed an overshoot phenomenon in the presence of outward-directed bicarbonate and/or inward-directed proton gradients. Kinetic analysis of L-[(14)C]lactic acid uptake revealed the involvement of two saturable processes in the presence of both proton and bicarbonate gradients. An arginyl residue-modifying agent, phenylglyoxal, inhibited L-[(14)C]lactic acid transport by the proton cotransporter, but not by the anion antiporter. The initial uptakes of L-[(14)C]lactic acid which are driven by bicarbonate ion and proton gradients were inhibited commonly by monocarboxylic acids and selectively by anion exchange inhibitor 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid and protonophore carbonylcyanide p-trifluoromethoxyphenylhydrazone, respectively. These observations demonstrate that L-lactic acid is transported across the intestinal brush-border membrane by multiple mechanisms, including an anion antiporter and a previously known proton cotransporter.  相似文献   

12.
About 80% of the CO2 formed by metabolism is transported from tissues to lungs as bicarbonate ions in the water phases of red cells and plasma. The catalysed hydration of CO2 to bicarbonate takes place in the erythrocytes but most of the bicarbonate thus formed must be exchanged with extracellular chloride to make full use of the carbon dioxide transporting capacity of the blood. The anion transport capacity of the red cell membrane is among the largest ionic transport capacities of any biological membrane. Exchange diffusion of chloride and bicarbonate is nevertheless a rate-limiting step for the transfer of CO2 from tissues to lungs. Measurements of chloride and bicarbonate self-exchange form the basis for calculations that demonstrate that the ionic exchange processes cannot run to complete equilibration at capillary transit times less than 0.5 s. The anion exchange diffusion is mediated by a large transmembrane protein constituting almost 30% of the total membrane protein. The kinetics of exchange diffusion must depend on conformational changes of the protein molecule, associated with the binding and subsequent translocation of the transported anion. We have characterized the nature of anion-binding sites facing the extracellular medium by acid-base titration of the transport function and modification of the transport protein in situ with group-specific amino acid reagents. Anion binding and translocation depend on the integrity and the degree of protonation of two sets of exofacial groups with apparent pK values of 12 and 5, respectively. From the chemical reactivities towards amino acid reagents it appears that the groups whose pK = 12 are guanidino groups of arginyl residues, while the groups whose pK = 5 are likely to be carboxylates of glutamic or aspartic acid. Our studies suggest that the characteristics of anion recognition sites in water-soluble proteins and in the integral transport proteins are closely related.  相似文献   

13.
Amphiphiles which induce either spiculated (echinocytic) or invaginated (stomatocytic) shapes in human erythrocytes, and ionophore A23187 plus Ca(2+), were studied for their capacity to induce shape alterations, vesiculation and hemolysis in the morphologically and structurally different lamprey and trout erythrocytes. Both qualitative and quantitative differences were found. Amphiphiles induced no gross morphological changes in the non-axisymmetric stomatocyte-like lamprey erythrocyte or in the flat ellipsoidal trout erythrocyte, besides a rounding up at higher amphiphile concentrations. No shapes with large broad spicula were seen. Nevertheless, some of the 'echinocytogenic' amphiphiles induced plasma membrane protrusions in lamprey and trout erythrocytes, from where exovesicles were shed. In trout erythrocytes, occurrence of corrugations at the cell rim preceded protrusion formation. Other 'echinocytogenic' amphiphiles induced invaginations in lamprey erythrocytes. The 'stomatocytogenic' amphiphiles induced invaginations in both lamprey and trout erythrocytes. Surprisingly, in trout erythrocytes, some protrusions also occurred. Some of the amphiphiles hemolyzed lamprey, trout and human erythrocytes at a significantly different concentration/membrane area. Ionophore A23187 plus Ca(2+) induced membrane protrusions and sphering in human and trout erythrocytes; however, the lamprey erythrocyte remained unperturbed. The shape alterations in lamprey erythrocytes, we suggest, are characterized by weak membrane skeleton-lipid bilayer interactions, due to band 3 protein and ankyrin deficiency. In trout erythrocyte, the marginal band of microtubules appears to strongly influence cell shape. Furthermore, the presence of intermediate filaments and nuclei, additionally affecting the cell membrane shear elasticity, apparently influences cell shape changes in lamprey and trout erythrocytes. The different types of shape alterations induced by certain amphiphiles in the cell types indicates that their plasma membrane phospholipid composition differs.  相似文献   

14.
The kinetics of pyruvate transport across the isolated red blood cell membrane were studied by a simple and precise spectrophotometric method: following the oxidation of NADH via lactate dehydrogenase trapped within resealed ghosts. The initial rate of pyruvate entry was linear. Influx was limited by saturation at high pyruvate concentration. Pyruvate influx was greatly stimulated by increasing ionic strength in the outer but not the inner aqueous compartment. The Km ranged from 15.0 mM at mu = 0.05 to 3.7 mM at mu = 0.01, while the V went from 0.611 - 10(15) to 0.137 - 10(-15) mol - min-1 - ghost-1. Ionic strength was shown to affect the translocation step and not pyruvate binding. The energy of activation of pyruvate flux into resealed ghosts was 25 kcal/mol, similar to that found in intact red blood cells. Inhibitors of pyruvate influx included such anions as thiocyanate, chloride, bicarbonate, alpha-cyanocinnamate, salicylate and ketomalonate (but not acetate); noncompetitive inhibitors were phloretin, 1-fluoro-2,4-dinitrobenzene, 4-acetamido-4'-isothiocyanate-stilbene-2,2'-disulfonic acid and o-phenanthroline/CuSO4 mixtures. The last reagent, known to induce disulfide links in certain membrane proteins, blocked the ionic strength stimulation of pyruvate influx in this study.  相似文献   

15.
The work studies the content and fatty acid composition of phospholipids as well as the absorption spectra of lipid extracts from red blood cells of poikilothermal and homoiothermal animals at different evolutionary levels. The objects of study include two poikilothermal species, the river lamprey (Lampetra fluviatilis) that uses oxygen dissolved in water, and the common frog (Rana temporaria) that consumes oxygen both from water and from air. A homoithermal animal is the white rat (Rattus rattus) that inhabits the terrestrial-aerial environment. The animals are studied in winter and spring. The phospholipid content in lamprey blood plasma is found to be twice higher than that in its erythrocytes. In the frog and the rat, the ratio is reverse. Determination of the fatty acid lipid composition of red blood cell phospholipids suggests that membranes in the lamprey are denser than in the frog. As for the fatty acids in the erythrocyte fraction of rat blood, they appear to be less diverse, with a double prevalence of saturated acids over unsaturated ones and devoid of long chain (C22) ω3 fatty acids. All of this results in a lower degree of unsaturation and a denser packing of fatty acids in the membrane structures of rat erythrocytes. The mechanism of reversible binding of O2 molecules to hemoglobin in erythrocytes is discussed. Presumably, the mechanism of interaction between molecules of O2 and molecules of water prevents the exchange interaction of electrons of the hemoglobin iron atoms with an oxygen molecule. This is confirmed by our obtained absorption spectra, which show that in the lipid extract almost totally devoid of water the heme isolated from erythrocytes is converted to hemin.  相似文献   

16.
The intraerythrocytic human malarial parasite Plasmodium falciparum produces lactate at a rate that exceeds the maximal capacity of the normal red cell membrane to transport lactate. In order to establish how the infected cell removes this excess lactate, the transport of lactate across the host cell and the parasite membranes has been investigated. Transport of radiolabeled L-lactate across the host cell membrane was shown to increase ca. 600-fold compared to uninfected erythrocytes. It showed no saturation with [L-lactate] and was inhibited by inhibitors of the monocarboxylate carrier, cinnamic acid derivatives (CADs), but not by the SH-reagent p-chloromercuriphenyl sulfonic acid (PCMBS). These results suggest that L-lactate is translocated through CAD-inhibitable new pathways induced in the host cell membrane by parasite activity, probably by diffusion of the acid form and through a modified native monocarboxylate:H+ symporter. Continuous monitoring of extracellular pH changes occurring upon suspension of infected cells in isoosmotic Na-lactate solutions indicates that part of the lactate egress is mediated by anionic exchange through the constitutive, but modified, anion exchanger. The transport of L-lactate across the parasite membrane is rapid, nonsaturating, and insensitive to either CADs or PCMBS, or to the presence of pyruvate. L-lactate uptake increased transiently when external pH was lowered and decreased when delta pH was dissipated by the protonophore carbonylcyanide m-chlorophenyl hydrazone (CCCP). These results are compatible with L-lactate crossing the parasite membrane either as the undissociated acid or by means of a novel type of lactate-/H+ symport.  相似文献   

17.
Peroxynitrite, the reactive species formed in vivo by the reaction of nitric oxide with superoxide anion, is capable of diffusing across erythrocyte membranes via anion channels and passive diffusion (A. Denicola, J. M. Souza, and R. Radi, Proc. Natl. Acad. Sci. USA 95, 3566-3571, 1998). However, peroxynitrite diffusion could be limited by extracellular targets, with the reaction with CO(2) (k(2) = 4.6 x 10(4) at 37 degrees C and pH 7.4) the most relevant. Herein, we studied the influence of physiological concentrations of CO(2) on peroxynitrite diffusion across intact red blood cells. The presence of CO(2) inhibited the oxidation of intracellular oxyhemoglobin by externally added peroxynitrite. However, the inhibition by CO(2) decreased at increasing red blood cell densities. At 45% hematocrit, 1.3 mM CO(2) (in equilibrium with 24 mM bicarbonate, at pH 7.4 and 25 degrees C) only inhibited 30% of intracellular oxyhemoglobin oxidation. This partial inhibition was also observed in red blood cells pretreated with the anion exchanger inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, ruling out a competition between peroxynitrite and bicarbonate for the transport through the anion channel. A theoretical model was developed to estimate the diffusion distance and half-life of extracellular peroxynitrite before reacting with intracellular oxyhemoglobin, at different red blood cell densities, and in the presence or absence of CO(2). The theoretical model correlated well with the experimental data. Our results indicate that, even in the presence of CO(2), peroxynitrite is able to diffuse and reach the inside of the erythrocyte.  相似文献   

18.
Effects of bicarbonate on lithium transport in human red cells   总被引:12,自引:9,他引:3       下载免费PDF全文
Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis.  相似文献   

19.
Organotin cations (R3Sn+) form electrically neutral ion pairs with monovalent anions. It is demonstrated that the tin derivatives induce exchange diffusion of chloride in red cells and resealed ghosts, without any detectable increase of membrane permeability to net movements of chloride ions. The obligatory anion exchange is believed to be due to the permeation of electroneural ion pairs, whereas the organic cation (R3Sn+) has an extremely low membrane permeability. Exchange fluxes of chloride increased with the lipophilicity of the substituting group (R3). At the same molar concentration of organotin, the relative potencies of the tin derivatives as anion carriers (with trimethyltin as a reference) were: methyl 1, ethyl 30, propyl = phenyl 1,00, and butyl 10,000. Tributyltin-mediated anion exchange was studied in detail. The organotin-induced anion transport increased through the sequence: F- less than Cl- less than Br- less than I- = SCN- less than OH-. Partitioning of tributyltin into red cell membranes was greater in iodide than in chloride media (partition coefficients 6.6 and 1.7 x 10(-3) cm, respectively). Bicarbonate, fluoride, nitrate, phosphate, and sulphate did not exchange with chloride in the presence of tributyltin. Chloride exchange fluxes increased linearly with tributylin concentrations up to 10(-5) M, and with chloride concentrations up to at least 0.9 M. The apparent turnover number for tributyltin-mediated chloride exchange increased from 15 to 1,350 s-1 between 0 and 38 degrees C. These figures are minimum turnover numbers, because it is not known what fraction of the organotin in the membrane exists as chloride ion pairs.  相似文献   

20.
1. Theoretical models can fit the oxygen equilibria of trout and human red cell suspensions, and describe the apparent oxygenation process in the red cell. 2. The assumption that full oxygenation is attained at atmospheric O2 pressures can result in biphasic Hill plots and high Hill coefficients for high O2 saturations. This phenomenon must not be confused with aggregation of hemoglobin. 3. Problems specific to measurements of red cell suspensions, regarding the ionic cellular composition and its stability with time, are approached. Changes of buffer osmolarity, and--for trout--addition of adrenaline, within physiological proportions, have no impact on the results. 4. This tends to validate the general significance of equilibrium data obtained on this material, regarding the effects of protons and organic phosphates, although complex ionic movements across the red cell membrane are known to occur in the animal under certain circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号