首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In stochastic environments, a change in a demographic parameter can influence the population growth rate directly or via a resulting impact on age structure. Stochastic elasticity of the long‐run stochastic growth rate λs to a demographic parameter offers a suitable way to measure the overall demographic response because it includes both the direct effect of changing the demographic parameter and its indirect effect through changes in the age structure. From 25 mammalian populations with contrasting life histories, we investigated how pace of life and population growth rate influence the demographic responses (measured as the relative contributions of the direct and indirect components of stochastic elasticity on λs). We found that in short‐lived species, the change in population structure resulting from an increase in yearling survival leads to an additional increase in λs, whereas in long‐lived species, the same change in population structure leads to a decrease. Short‐lived species thus display a boom‐bust life history strategy contrary to long‐lived species, for which the long lifespan dampens the demographic consequences of changing age structure. Irrespective of the species’ life history strategy, the change in population age structure resulting from an increase in adult survival leads to an additional increase in λs due to an increase of the proportion of mature individuals in the population. On the contrary, a change in population age structure resulting from an increase of reproductive performance leads to a decrease in λs that is due to the increase of the proportion of immature individuals in the population. Our comparative analysis of stochastic elasticity patterns in mammals shows the existence of different demographic responses to changes in age structure between short‐ and long‐lived species, which improves our understanding of population dynamics in variable environments in relation to the species‐specific pace of life.  相似文献   

2.
Temporal variation in demographic processes can greatly impact population dynamics. Perturbations of statistical coefficients that describe demographic rates within matrix models have, for example, revealed that stochastic population growth rates (log(λs)) of fast life histories are more sensitive to temporal autocorrelation of environmental conditions than those of slow life histories. Yet, we know little about the mechanisms that drive such patterns. Here, we used a mechanistic, functional trait approach to examine the functional pathways by which a typical fast life history species, the macrodetrivore Orchestia gammarellus, and a typical slow life history species, the reef manta ray Manta alfredi, differ in their sensitivity to environmental autocorrelation if (a) growth and reproduction are described mechanistically by functional traits that adhere to the principle of energy conservation, and if (b) demographic variation is determined by temporal autocorrelation in food conditions. Opposite to previous findings, we found that O. gammarellus log(λs) was most sensitive to the frequency of good food conditions, likely because reproduction traits, which directly impact population growth, were most influential to log(λs). Manta alfredi log(λs) was instead most sensitive to temporal autocorrelation, likely because growth parameters, which impact population growth indirectly, were most influential to log(λs). This differential sensitivity to functional traits likely also explains why we found that O. gammarellus mean body size decreased (due to increased reproduction) but M. alfredi mean body size increased (due to increased individual growth) as food conditions became more favorable. Increasing demographic stochasticity under constant food conditions decreased O. gammarellus mean body size and increased log(λs) due to increased reproduction, whereas M. alfredi mean body and log(λs) decreased, likely due to decreased individual growth. Our findings signify the importance of integrating functional traits into demographic models as this provides mechanistic understanding of how environmental and demographic stochasticity affects population dynamics in stochastic environments.  相似文献   

3.
Dormant life stages are often critical for population viability in stochastic environments, but accurate field data characterizing them are difficult to collect. Such limitations may translate into uncertainties in demographic parameters describing these stages, which then may propagate errors in the examination of population‐level responses to environmental variation. Expanding on current methods, we 1) apply data‐driven approaches to estimate parameter uncertainty in vital rates of dormant life stages and 2) test whether such estimates provide more robust inferences about population dynamics. We built integral projection models (IPMs) for a fire‐adapted, carnivorous plant species using a Bayesian framework to estimate uncertainty in parameters of three vital rates of dormant seeds – seed‐bank ingression, stasis and egression. We used stochastic population projections and elasticity analyses to quantify the relative sensitivity of the stochastic population growth rate (log λs) to changes in these vital rates at different fire return intervals. We then ran stochastic projections of log λs for 1000 posterior samples of the three seed‐bank vital rates and assessed how strongly their parameter uncertainty propagated into uncertainty in estimates of log λs and the probability of quasi‐extinction, Pq(t). Elasticity analyses indicated that changes in seed‐bank stasis and egression had large effects on log λs across fire return intervals. In turn, uncertainty in the estimates of these two vital rates explained > 50% of the variation in log λs estimates at several fire‐return intervals. Inferences about population viability became less certain as the time between fires widened, with estimates of Pq(t) potentially > 20% higher when considering parameter uncertainty. Our results suggest that, for species with dormant stages, where data is often limited, failing to account for parameter uncertainty in population models may result in incorrect interpretations of population viability.  相似文献   

4.
Population dynamics are typically temporally autocorrelated: population sizes are positively or negatively correlated with past population sizes. Previous studies have found that positive temporal autocorrelation increases the risk of extinction due to ‘inertia’ that prolongs downward fluctuations in population size. However, temporal autocorrelation has not yet been analyzed at the level of life cycle transitions. We developed an R package, colorednoise, which creates stochastic matrix population projections with distinct temporal autocorrelation values for each matrix element. We used it to analyze long-term demographic data on 25 populations from the COMADRE and COMPADRE databases and simulate their stochastic dynamics. We found a broad range of temporal autocorrelation across species, populations and life cycle stages. The number of stage-classes in the matrix strongly affected the temporal autocorrelation of the growth rate. In the plant populations, reproduction transitions had more negative temporal autocorrelation than survival transitions, and matrices dominated by positive temporal autocorrelation had higher extinction risk, while in animal populations transition type was not associated with noise color. Our results indicate that temporal autocorrelation varies across life cycle transitions, even among populations of the same species. We present the colorednoise package for researchers to analyze the temporal autocorrelation of structured demographic rates.  相似文献   

5.
A major challenge in ecology is to understand how populations are affected by increased climate variability. Here, we assessed the effects of observed climate variability on different organismal groups (amphibians, insects, mammals, herbaceous plants and reptiles) by estimating the extent to which interannual variation in the annual population growth rates (CVλ) and the absolute value of the long-term population growth rate (|log λ|) were associated with short-term climate variability. We used empirical data (≥ 20 consecutive years of annual abundances) from 59 wild populations in the Northern Hemisphere, and quantified variabilities in population growth rates and climatic conditions (temperature and precipitation in active and inactive seasons) calculated over four- and eight-year sliding time windows. We observed a positive relationship between the variability of growth rate (CVλ) and the variability of temperature in the active season at the shorter timescale only. Moreover, |log λ| was positively associated with the variability of precipitation in the inactive season at both timescales. Otherwise, the direction of the relationships between population dynamics and climate variability (if any) depended largely on the season and organismal group in question. Both CVλ and |log λ| correlated negatively with species' lifespan, indicating general differences in population dynamics between short-lived and long-lived species that were not related to climate variability. Our results suggest that although temporal variation in population growth rates and the magnitude of long-term population growth rates are partially associated with short-term interannual climate variability, demographic responses to climate fluctuations might still be population-specific rather than specific to given organismal groups, and driven by other factors than the observed climate variability.  相似文献   

6.
Despite the importance of tropical birds in the development of life history theory, we lack information about demographic rates and drivers of population dynamics for most species. We used a 7‐year (2007–2013) capture‐mark‐recapture dataset from an exceptionally wet premontane forest at mid‐elevation in Costa Rica to estimate apparent survival for seven species of tropical passerines. For four of these species, we provide the first published demographic parameters. Recapture probabilities ranged from 0.21 to 0.53, and annual estimates of apparent survival varied from 0.23 to 1.00. We also assessed the consequences of inter‐annual variation in rainfall on demographic rates. Our results are consistent with inter‐annual rainfall increasing estimates of apparent survival for two species and decreasing estimates for three species. For the three species where we could compare our estimates of apparent survival to estimates from drier regions, our estimates were not consistently higher or lower than those published previously. The temporal and spatial variability in demographic rates we document within and among species highlights the difficulties of generalizing life history characteristics across broad biogeographic gradients. Most importantly, this work emphasizes the context‐specific role of precipitation in shaping tropical avian demographic rates and underscores the need for mechanistic studies of environmental drivers of tropical life histories.  相似文献   

7.
Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait‐based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life‐history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life‐history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait‐space‐demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability.  相似文献   

8.
Recent field studies suggest that it is common in nature for animals to outlive their reproductive viability. Post‐reproductive life span has been observed in a broad range of vertebrate and invertebrate species. But post‐reproductive life span poses a paradox for traditional theories of life history evolution. The only commonly‐cited explanation is the ‘grandmother hypothesis’, which is limited to higher, social mammals. We propose that post‐reproductive life span evolves to stabilize population dynamics, avoiding local extinctions. Predator–prey and other ecosystem interactions tend to produce volatility that can create population crashes and local extinctions. Total fertility rates that exceed the ecosystem's recovery rate contribute to population overshoot, followed by collapse. These local extinctions may constitute a potent group selection mechanism, driving evolution toward controlled rates of population growth, even when there is a significant individual cost. In this paper, we consider the question: what life history characteristics support demographic homeostasis at the least cost to individual fitness? In individual‐based evolutionary simulations, we find that reduction in fertility is sufficient to avoid population instabilities leading to extinction, but that life histories that include senescence can accomplish the same thing at a lower cost to individual fitness. Furthermore, life histories that include the potential for a post‐reproductive period are yet more efficient at stabilizing population dynamics, while minimizing the impact on individual fitness.  相似文献   

9.
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

10.
Recent studies of rates of evolution have revealed large systematic differences among organisms with different life histories, both within and among taxa. Here, we consider how life history may affect the rate of evolution via its influence on the fixation probability of slightly beneficial mutations. Our approach is based on diffusion modeling for a finite, stage‐structured population with stochastic population dynamics. The results, which are verified by computer simulations, demonstrate that even with complex population structure just two demographic parameters are sufficient to give an accurate approximation of the fixation probability of a slightly beneficial mutation. These are the reproductive value of the stage in which the mutation first occurs and the demographic variance of the population. The demographic variance also determines what influence population size has on the fixation probability. This model represents a substantial generalization of earlier models, covering a large range of life histories.  相似文献   

11.
Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long‐term, large‐scale, and cross‐taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large‐scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large‐scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long‐term life‐history data for natural populations of seven primate species that have been studied for 29–52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.  相似文献   

12.
Life history trade-offs are ubiquitous in nature. Life history theory posits that these trade-offs arise from individuals having limited resources to allocate toward all vital functions, such as survival, growth and reproduction. These trade-offs position most species along a slow-fast life history continuum, where individuals with slow life histories often have higher survival at the cost of delayed reproduction and individuals with fast life histories often live faster and die younger. However, these trade-offs are sometimes less obvious for invasive species. Here, we constructed age-based population models to compare life history strategies and trade-offs between the noninvasive, native mustard white and invasive, exotic cabbage white (Pieris spp.) butterflies. We found that the cabbage white has faster larval growth and higher fecundity at younger ages, suggesting it has a fast life history compared to the mustard white. However, cabbage white also has higher adult survival at younger ages, suggesting that it experiences weaker trade-offs among vital rates than its native counterpart. Our study illustrates the importance of demographic studies in evaluating life history strategies among congener species with different population histories, and emphasizes the many advantages experienced by invasive species in their novel environments.  相似文献   

13.
Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human‐mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure.  相似文献   

14.
Physical maturation and life‐history parameters are seen as evolutionary adaptations to different ecological and social conditions. Comparison of life‐history patterns of closely related species living in diverse environments helps to evaluate the validity of these assumptions but empirical data are lacking. The two gorilla species exhibit substantial differences in their environment, which allows investigation into the role of increased frugivory in shaping western gorilla life histories. We present behavioral and morphological data on western gorilla physical maturation and life‐history parameters from a 12.5‐year study at Mbeli Bai, a forest clearing in the Nouabalé‐Ndoki National Park in northern Congo. We assign photographs of known individuals to different life‐history classes and propose new age boundaries for life‐history classes in western gorillas, which can be used and tested at other western gorilla research sites. Our results show that western gorillas are weaned at a later age compared with mountain gorillas and indicate slower physical maturation of immatures. These findings support the risk‐aversion hypothesis for more frugivorous species. However, our methods need to be applied and tested with other gorilla populations. The slow life histories of western gorillas could have major consequences for social structure, mortality patterns and population growth rates that will affect recovery from population crashes of this critically endangered species. We emphasize that long‐term studies can provide crucial demographic and life‐history data that improve our understanding of life‐history evolution and adaptation and help to refine conservation strategies. Am. J. Primatol. 71:106–119, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Elevational gradients provide powerful natural systems for testing hypotheses regarding the role of environmental variation in the evolution of life‐history strategies. Case studies have revealed shifts towards slower life histories in organisms living at high elevations yet no synthetic analyses exist of elevational variation in life‐history traits for major vertebrate clades. We examined (i) how life‐history traits change with elevation in paired populations of bird species worldwide, and (ii) which biotic and abiotic factors drive elevational shifts in life history. Using three analytical methods, we found that fecundity declined at higher elevations due to smaller clutches and fewer reproductive attempts per year. By contrast, elevational differences in traits associated with parental investment or survival varied among studies. High‐elevation populations had shorter and later breeding seasons, but longer developmental periods implying that temporal constraints contribute to reduced fecundity. Analyses of clutch size data, the trait for which we had the largest number of population comparisons, indicated no evidence that phylogenetic history constrained species‐level plasticity in trait variation associated with elevational gradients. The magnitude of elevational shifts in life‐history traits were largely unrelated to geographic (altitude, latitude), intrinsic (body mass, migratory status), or habitat covariates. Meta‐population structure, methodological issues associated with estimating survival, or processes shaping range boundaries could potentially explain the nature of elevational shifts in life‐history traits evident in this data set. We identify a new risk factor for montane populations in changing climates: low fecundity will result in lower reproductive potential to recover from perturbations, especially as fewer than half of the species experienced higher survival at higher elevations.  相似文献   

16.
Mate searching is a key component of sexual reproduction that can have important implications for population viability, especially for the mate‐finding Allee effect. Interannual sperm storage by females may be an adaptation that potentially attenuates mate limitation, but the demographic consequences of this functional trait have not been studied. Our goal is to assess the effect of female sperm storage durability on the strength of the mate‐finding Allee effect and the viability of populations subject to low population density and habitat alteration. We used an individual‐based simulation model that incorporates realistic representations of the demographic and spatial processes of our model species, the spur‐thighed tortoise (Testudo graeca). This allowed for a detailed assessment of reproductive rates, population growth rates, and extinction probabilities. We also studied the relationship between the number of reproductive males and the reproductive rates for scenarios combining different levels of sperm storage durability, initial population density, and landscape alteration. Our results showed that simulated populations parameterized with the field‐observed demographic rates collapsed for short sperm storage durability, but were viable for a durability of one year or longer. In contrast, the simulated populations with a low initial density were only viable in human‐altered landscapes for sperm storage durability of 4 years. We find that sperm storage is an effective mechanism that can reduce the strength of the mate‐finding Allee effect and contribute to the persistence of low‐density populations. Our study highlights the key role of sperm storage in the dynamics of species with limited movement ability to facilitate reproduction in patchy landscapes or during population expansion. This study represents the first quantification of the effect of sperm storage durability on population dynamics in different landscapes and population scenarios.  相似文献   

17.
Plant strategy and life‐history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life‐history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life‐history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.  相似文献   

18.
Theoretical studies suggest that temporal covariation among and temporal autocorrelation within demographic rates are important features of population dynamics. Yet, empirical studies have rarely focused on temporal covariation and autocorrelation limiting our understanding of these patterns in natural populations. This lack of knowledge restrains our ability to fully understand population dynamics and to make reliable population forecasts. In order to fill this gap, we used a long‐term monitoring (15 years) of a kestrel Falco tinnunculus population to investigate covariation and autocorrelation in survival and reproduction at the population level and their impact on population dynamics. Using Bayesian joint analyses, we found support for positive covariation between survival and reproduction, but weak autocorrelation through time. This positive covariation was stronger in juveniles compared with adults. As expected for a specialized predator, we found that the reproductive performance was strongly related to an index of vole abundance explaining 86% of the temporal variation. This very strong relationship suggests that the temporally variable prey abundance may drive the positive covariation between survival and reproduction in this kestrel population. Simulations suggested that the observed effect size of covariation could be strong enough to affect population dynamics. More generally, positive covariation and autocorrelation have a destabilizing effect increasing substantially the temporal variability of population size.  相似文献   

19.
Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower‐level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life‐history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully‐parameterized population models, new insights can be gained; differences among species in the impacts of climate‐driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data‐deficient species.  相似文献   

20.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号