首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

2.
亚热带丛枝菌根与外生菌根森林对土壤氮循环的影响   总被引:1,自引:0,他引:1  
菌根真菌能促进植物获取氮素从而调节土壤氮循环过程,但不同类型菌根影响土壤氮循环的特征尚待更多研究.本试验选择中国亚热带典型次生林植被,设置丛枝菌根(AM)和外生菌根(ECM)树种优势样地,对比分析两种菌根类型森林土壤氮状态的差异,以探究菌根类型影响土壤氮循环的可能作用机制.结果 表明,AM与ECM森林的土壤总氮和铵态氮...  相似文献   

3.
杨浩  史加勉  郑勇 《生态学报》2024,44(7):2734-2744
森林生态系统在全球碳(C)储量中占据极为重要的地位。菌根真菌广泛存在于森林生态系统中,在森林生态系统C循环过程中发挥重要的作用。阐述了不同菌根类型真菌在森林生态系统C循环过程中的功能,对比了温带/北方森林与热带/亚热带森林中菌根真菌介导的C循环研究方面新近取得的研究结果。发现温带和北方森林的外生菌根(EcM)植物对地上生物量C的贡献相对较小,然而是地下C储量的主要贡献者;以丛枝菌根(AM)共生为主的热带/亚热带森林地表生物量占比较高,表明AM植被对热带/亚热带森林地上生物量C的贡献相对较大。我们还就全球变化背景下,菌根真菌及其介导的森林生态系统C汇功能,以及不同菌根类型树种影响C循环的机制等进行了总结。菌根真菌通过影响凋落物分解、土壤有机质形成及地下根系生物量,进而影响整个森林生态系统的C循环功能。菌根介导的森林C循环过程很大程度上取决于(优势)树木的菌根类型和森林土壤中菌根真菌的群落结构。最后指出了当前研究存在的主要问题以及未来研究展望。本文旨在明确菌根真菌在森林生态系统C循环转化过程中的重要生态功能,有助于准确地评估森林生态系统C汇现状,为应对全球变化等提供重要的依据。  相似文献   

4.
While it is increasingly recognized that ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) tree species vary in their effects on soil nitrogen (N) cycling, little is known about the mechanisms causing and how ECM and AM trees adapt to this variation. Using monoculture plots of six ECM and eight AM tropical trees planted in a common garden, we examined whether the contrasting effects of ECM and AM trees on soil N cycling could be explained by their differences in plant traits. Furthermore, rhizosphere effects on soil N transformations and soil exploration by fine roots were also measured to assess whether ECM and AM trees differed in N acquisition capacities. Results showed that soil NH4+‐N concentration, net N mineralization and net nitrification rates were markedly lower, but soil C:N ratio was significantly higher beneath ECM trees than beneath AM trees. This more closed N cycling caused by ECM trees was attributed to their resource‐conservative traits, especially the poorer leaf litter decomposability compared with AM trees. To adapt to their induced lower soil N availability, ECM trees were found to have greater rhizosphere effects on NO3‐N concentration, net N mineralization and net nitrification rates to mine N, and higher soil exploration in terms of root length density to scavenge N from soils, indicating that these two strategies work in synergy to meet N demand of ECM trees. These findings suggest that ECM and AM trees have contrasting effects on soil N cycling owing to their differences in leaf litter decomposability and correspondingly possess different N acquisition capacities.  相似文献   

5.
Soil organic phosphorus (P) compounds can be the main P source for plants in P‐limited tropical rainforests. Phosphorus occurs in diverse chemical forms, including monoester P, diester P, and phytate, which require enzymatic hydrolysis by phosphatase into inorganic P before assimilation by plants. The interactions between plant interspecific differences in organic P acquisition strategies via phosphatase activities with root morphological traits would lead to P resource partitioning, but they have not been rigorously evaluated. We measured the activities of three classes of phosphatases (phosphomonoesterase, PME; phosphodiesterase, PDE; and phytase, PhT), specific root length (SRL), root diameter, and root tissue density in mature tree species with different mycorrhizal associations (ectomycorrhizal [ECM] or arbuscular mycorrhizal [AM]) and different successional status (climax or pioneer species) in Sabah, Malaysia. We studied nitrogen (N)‐ and P‐fertilized plots to evaluate the acquisition strategies for organic P under P‐limited conditions 7 years after fertilization was initiated. P fertilization reduced the PME activity in all studied species and reduced PhT and PDE activities more in climax species than in the two pioneer species, irrespective of the mycorrhizal type. PDE activity increased in some climax species after N fertilization, suggesting that these species allocate excess N to the synthesis of PDE. Moreover, PME and PhT activities, but not PDE activity, correlated positively with SRL. We suggest that climax species tend to be more strongly dependent on recalcitrant organic P (i.e., phytate and/or diester P) than pioneer species, regardless of the mycorrhizal type. We also suggest that trees in which root PME or PhT activity is enhanced can increase their SRL to acquire P efficiently. Resource partitioning of soil organic P would occur among species through differences in their phosphatase activities, which plays potentially ecologically important role in reducing the competition among coexisting tree species in lowland tropical rainforests.  相似文献   

6.
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are characterised by thin forest floors and low soil C : N ratio, were invaded to a greater extent by non‐native invasive species than ectomycorrhizal (ECM) dominant forests. Understory native species cover and richness had no strong associations with AM tree dominance. We also found no difference in the mycorrhizal type composition of understory invaders between AM and ECM dominant forests. Our results indicate that dominant forest tree mycorrhizal type is closely linked with understory invasions. The increased invader abundance in AM dominant forests can further facilitate nutrient cycling, leading to the alteration of ecosystem structure and functions.  相似文献   

7.
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long‐term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM‐dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition—e.g. most AM‐dominated forests—enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM‐dominance in three temperate forests. By focusing on sites where AM‐ and ECM‐plants co‐occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM‐dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM.  相似文献   

8.
Ecosystem carbon (C) balance is hypothesised to be sensitive to the mycorrhizal strategies that plants use to acquire nutrients. To test this idea, we coupled an optimality‐based plant nitrogen (N) acquisition model with a microbe‐focused soil organic matter (SOM) model. The model accurately predicted rhizosphere processes and C–N dynamics across a gradient of stands varying in their relative abundance of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees. When mycorrhizal dominance was switched – ECM trees dominating plots previously occupied by AM trees, and vice versa – legacy effects were apparent, with consequences for both C and N stocks in soil. Under elevated productivity, ECM trees enhanced decomposition more than AM trees via microbial priming of unprotected SOM. Collectively, our results show that ecosystem responses to global change may hinge on the balance between rhizosphere priming and SOM protection, and highlight the importance of dynamically linking plants and microbes in terrestrial biosphere models.  相似文献   

9.
Plant mycorrhizal associations influence the accumulation and persistence of soil organic matter and could therefore shape ecosystem biogeochemical responses to global changes that are altering forest composition. For instance, arbuscular mycorrhizal (AM) tree dominance is increasing in temperate forests, and ericoid mycorrhizal (ErM) shrubs can respond positively to canopy disturbances. Yet how shifts in the co-occurrence of trees and shrubs with different mycorrhizal associations will affect soil organic matter pools remains largely unknown. We examine the effects of ErM shrubs on soil carbon and nitrogen stocks and indicators of microbial activity at different depths across gradients of AM versus ectomycorrhizal (EcM) tree dominance in three temperate forest sites. We find that ErM shrubs strongly modulate tree mycorrhizal dominance effects. In surface soils, ErM shrubs increase particulate organic matter accumulation and weaken the positive relationship between soil organic matter stocks and indicators of microbial activity. These effects are strongest under AM trees that lack fungal symbionts that can degrade organic matter. In subsurface soil organic matter pools, by contrast, tree mycorrhizal dominance effects are stronger than those of ErM shrubs. Ectomycorrhizal tree dominance has a negative influence on particulate and mineral-associated soil organic matter pools, and these effects are stronger for nitrogen than for carbon stocks. Our findings suggest that increasing co-occurrence of ErM shrubs and AM trees will enhance particulate organic matter accumulation in surface soils by suppressing microbial activity while having little influence on mineral-associated organic matter in subsurface soils. Our study highlights the importance of considering interactions between co-occurring plant mycorrhizal types, as well as their depth-dependent effects, for projecting changes in soil carbon and nitrogen stocks in response to compositional shifts in temperate forests driven by disturbances and global change.  相似文献   

10.
The exudation of carbon (C) by tree roots stimulates microbial activity and the production of extracellular enzymes in the rhizosphere. Here, we investigated whether the strength of rhizosphere processes differed between temperate forest trees that vary in soil organic matter (SOM) chemistry and associate with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. We measured rates of root exudation, microbial and extracellular enzyme activity, and nitrogen (N) availability in samples of rhizosphere and bulk soil influenced by four temperate forest tree species (i.e., to estimate a rhizosphere effect). Although not significantly different between species, root exudation ranged from 0.36 to 1.10 g C m?2 day?1, representing a small but important transfer of C to rhizosphere microbes. The magnitude of the rhizosphere effects could not be easily characterized by mycorrhizal associations or SOM chemistry. Ash had the lowest rhizosphere effects and beech had the highest rhizosphere effects, representing one AM and one ECM species, respectively. Hemlock and sugar maple had equivalent rhizosphere effects on enzyme activity. However, the form of N produced in the rhizosphere varied with mycorrhizal association. Enhanced enzyme activity primarily increased amino acid availability in ECM rhizospheres and increased inorganic N availability in AM rhizospheres. These results show that the exudation of C by roots can enhance extracellular enzyme activity and soil-N cycling. This work suggests that global changes that alter belowground C allocation have the potential to impact the form and amount of N to support primary production in ECM and AM stands.  相似文献   

11.
Paradoxically, symbiotic dinitrogen (N2) fixers are abundant in nitrogen (N)‐rich, phosphorus (P)‐poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N‐rich enzymes (phosphatases) that mineralise organic P than non‐N2 fixers. We assessed soil and root phosphatase activity between fixers and non‐fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non‐fixers. Root phosphatase activity and AM colonisation were higher for fixers than non‐fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N–P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.  相似文献   

12.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   

13.
The contribution of mycorrhizal associations to maintaining tree diversity patterns in tropical rain forests is poorly known. Many tropical monodominant trees form ectomycorrhizal (EM) associations, and there is evidence that the EM mutualism contributes to the maintenance of monodominance. It is assumed that most other tropical tree species form arbuscular mycorrhizal (AM) associations, and while many mycorrhizal surveys have been done, the mycorrhizal status of numerous tropical tree taxa remains undocumented. In this study, we tested the assumption that most tropical trees form AM associations by sampling root vouchers from tree and liana species in monodominant Dicymbe corymbosa forest and an adjacent mixed rain forest in Guyana. Roots were assessed for the presence/absence of AM and EM structures. Of the 142 species of trees and lianas surveyed, three tree species (the monodominant D. corymbosa, the grove-forming D. altsonii, and the non-dominant Aldina insignis) were EM, 137 were exclusively AM, and two were non-mycorrhizal. Both EM and AM structures were observed in D. corymbosa and D. altsonii. These results provide empirical data supporting the assumption that most tropical trees form AM associations for this region in the Guiana Shield and provide the first report of dual EM/AM colonization in Dicymbe species. Dual colonization of the Dicymbe species should be further explored to determine if this ability contributes to the establishment and maintenance of site dominance. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A central challenge in global ecology is the identification of key functional processes in ecosystems that scale, but do not require, data for individual species across landscapes. Given that nearly all tree species form symbiotic relationships with one of two types of mycorrhizal fungi – arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi – and that AM‐ and ECM‐dominated forests often have distinct nutrient economies, the detection and mapping of mycorrhizae over large areas could provide valuable insights about fundamental ecosystem processes such as nutrient cycling, species interactions, and overall forest productivity. We explored remotely sensed tree canopy spectral properties to detect underlying mycorrhizal association across a gradient of AM‐ and ECM‐dominated forest plots. Statistical mining of reflectance and reflectance derivatives across moderate/high‐resolution Landsat data revealed distinctly unique phenological signals that differentiated AM and ECM associations. This approach was trained and validated against measurements of tree species and mycorrhizal association across ~130 000 trees throughout the temperate United States. We were able to predict 77% of the variation in mycorrhizal association distribution within the forest plots (P < 0.001). The implications for this work move us toward mapping mycorrhizal association globally and advancing our understanding of biogeochemical cycling and other ecosystem processes.  相似文献   

15.
Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of potassium, in Glomus sp. suggest that the well-known influence of tree species on chemical soil properties may be related to their mycorrhizal associates.  相似文献   

16.
Recent studies have shown that mycorrhizal trees can greatly influence soil microbial communities, which in turn play important roles in the function offorest ecosystems. However, there is lack of understanding how the composition of trees with different mycorrhizal types affects soil microbial communities. Here, we collected 1606 soil samples from a 25-ha subtropical forest plot to investigate how the proportion of arbuscular mycorrhizal (AM) versus ectomycorrhizal (EcM) trees mediated soil microbial assemblages. Results showed the alpha diversities of both soil fungal and bacterial communities were significantly positively correlated with the ratio of AM/EcM trees. The AM/EcM tree ratio was important to the fungal community assembly, whereas soil pH was key to the bacterial communities. The increase in the AM/EcM tree ratio decreased the importance of stochastic forces in assembling fungal communities, while it had no significant effect on the bacterial communities. The differential importance of the AM/EcM tree ratio to fungal and bacterial communities highlights the role of mycorrhiza-associated tree composition in regulating soil microbial communities. This finding suggests that forests with different AM/EcM tree ratios would have different soil microbial communities, potentially leading to differences in soil nutrient cycling and in return different tree diversity and forest productivity.  相似文献   

17.
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.  相似文献   

18.
菌根是由土壤中的菌根菌与植物根系形成的互惠共生体, 在植物生产力和生态系统碳循环过程中发挥着重要的作用。该文基于全球森林数据库, 建立了包括全球森林菌根类型、净初级生产力(net primary productivity, NPP)和年平均气温等指标的新数据库。在此基础上, 分析了6种菌根类型(丛枝菌根(arbuscular mycorrhiza, AM)、AM +外生菌根(ectomycorrhiza, ECM)、AM + ECM +内外生菌根(ectendomycorrhiza, EEM)、ECM、ECM + EEM和ECM + EEM +无菌根(nonmycorrhiza, NM))森林的总NPP、地上和地下NPP、树木主干NPP、树叶NPP, 以及树木细根NPP对年平均气温变化的响应。结果表明, 不同菌根类型的森林总NPP、地上和地下NPP虽然都随气温的升高呈现上升的趋势, 但其响应程度因菌根类型的不同而有所差异。除AM和AM + ECM + EEM类型的森林外, 其他4种菌根类型的森林总NPP都随年平均气温的增加而显著增加; 随着菌根类型的不同, 地上和地下NPP对年平均气温变化的响应程度也存在差异, 在AM + ECM类型的森林中, 气温对地上NPP变异的解释率最高, 达到57.27%, 而地下NPP仅在ECM类型和ECM + EEM类型的森林中呈现出与年平均气温显著的回归关系。树木主干、树叶和细根的NPP则随菌根类型的不同而变化, 与气温变化呈现正、负相关关系。从AM与ECM类型的森林的NPP来看, 无论是总NPP还是各个组成部分的NPP, ECM类型的森林的NPP对气温的响应总是较AM类型更为敏感。可见, 不同类型的菌根通过影响森林不同部分的NPP对气温变化的响应程度而影响到森林NPP对气温变化的响应。这表明菌根类型是预测气温变化对森林NPP影响的重要指标。  相似文献   

19.

Background

Ectomycorrhizal (ECM) fungi provide one of the main pathways for carbon (C) to move from trees into soils, where these fungi make significant contributions to microbial biomass and soil respiration.

Scope

ECM fungal species vary significantly in traits that likely influence C sequestration, such that forest C sequestration potential may be driven in part by the existing community composition of ECM fungi. Moreover, accumulating experimental data show that tree genotypes differ in their compatibility with particular ECM fungal species, i.e. mycorrhizal traits of forest trees are heritable. Those traits are genetically correlated with other traits for which tree breeders commonly select, suggesting that selection for traits of interest, such as disease resistance or growth rate, could lead to indirect selection for or against particular mycorrhizal traits of trees in forest plantations.

Conclusions

Altogether, these observations suggest that selection of particular tree genotypes could alter the community composition of symbiotic ECM fungi in managed forests, with cascading effects on soil functioning and soil C sequestration.  相似文献   

20.
In tropical forest ecosystems, a paradoxical relationship is commonly observed between massive biomass production and low soil fertility (low pH). The loss and deficiency of soil phosphorus (P) and bases generally constrain biomass production; however, high productivity on nutrient-deficient soils of Bornean tropical forests is hypothesized to be maintained by plant and microorganism adaptation to an acidic soil environment. Proton budgets in the plant–soil system indicated that plants and microorganisms promote acidification to acquire bases, even in highly acidic tropical soils. The nitric and organic acids they produce contribute to the mobilization of basic cations and their uptake by plants. In response to soil P deficiency and the recalcitrance of lignin-rich organic matter, specific trees and fungi can release organic acids and enzymes for nutrient acquisition. Organic acids exuded by roots and rhizosphere microorganisms can promote the solubilization of P bonded to aluminum and iron oxides and its uptake by plants from P-poor soils. Lignin degradation, a rate-limiting step in organic matter decomposition, is specifically enhanced in acidic organic layers by lignin peroxidase, produced by white-rot fungi, which may solubilize recalcitrant lignin and release soluble aromatic substances into the soil solution. This dissolved organic matter functions in the transport of nitrogen, P, and basic cations in acidic soils without increasing leaching loss. In Bornean tropical forests, soil acidification is promoted by plants and microorganisms as a nutrient acquisition strategy, while plant roots and fungi can develop rhizosphere and enzymatic processes that promote tolerance of low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号